Lösung 4.4:5c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			K   | 
				K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel))  | 
			||
| Zeile 1: | Zeile 1: | ||
For a fixed value of ''u'', an equality of the form  | For a fixed value of ''u'', an equality of the form  | ||
| - | {{  | + | {{Abgesetzte Formel||<math>\cos u=\cos v</math>}}  | 
is satisfied by two angles ''v'' in the unit circle,  | is satisfied by two angles ''v'' in the unit circle,  | ||
| - | {{  | + | {{Abgesetzte Formel||<math>v=u\qquad\text{and}\qquad v=-u\,\textrm{.}</math>}}  | 
[[Image:4_4_5_c.gif|center]]  | [[Image:4_4_5_c.gif|center]]  | ||
| Zeile 11: | Zeile 11: | ||
This means that all angles ''v'' which satisfy the equality are  | This means that all angles ''v'' which satisfy the equality are  | ||
| - | {{  | + | {{Abgesetzte Formel||<math>v=u+2n\pi\qquad\text{and}\qquad v=-u+2n\pi\,,</math>}}  | 
where ''n'' is an arbitrary integer.   | where ''n'' is an arbitrary integer.   | ||
| Zeile 17: | Zeile 17: | ||
Therefore, the equation  | Therefore, the equation  | ||
| - | {{  | + | {{Abgesetzte Formel||<math>\cos 5x=\cos (x+\pi/5)</math>}}  | 
has the solutions  | has the solutions  | ||
| - | {{  | + | {{Abgesetzte Formel||<math>\left\{\begin{align} 5x&=x+\frac{\pi}{5}+2n\pi\quad\text{or}\\[5pt] 5x &= -x-\frac{\pi}{5}+2n\pi\,\textrm{.}\end{align}\right.</math>}}  | 
If we collect ''x'' onto one side, we end up with  | If we collect ''x'' onto one side, we end up with  | ||
| - | {{  | + | {{Abgesetzte Formel||<math>\left\{\begin{align}  | 
x &= \frac{\pi}{20} + \frac{n\pi}{2}\,,\\[5pt]  | x &= \frac{\pi}{20} + \frac{n\pi}{2}\,,\\[5pt]  | ||
x &= -\frac{\pi }{30}+\frac{n\pi}{3}\,,  | x &= -\frac{\pi }{30}+\frac{n\pi}{3}\,,  | ||
Version vom 09:00, 22. Okt. 2008
For a fixed value of u, an equality of the form
| \displaystyle \cos u=\cos v | 
is satisfied by two angles v in the unit circle,
| \displaystyle v=u\qquad\text{and}\qquad v=-u\,\textrm{.} | 
This means that all angles v which satisfy the equality are
| \displaystyle v=u+2n\pi\qquad\text{and}\qquad v=-u+2n\pi\,, | 
where n is an arbitrary integer.
Therefore, the equation
| \displaystyle \cos 5x=\cos (x+\pi/5) | 
has the solutions
| \displaystyle \left\{\begin{align} 5x&=x+\frac{\pi}{5}+2n\pi\quad\text{or}\\[5pt] 5x &= -x-\frac{\pi}{5}+2n\pi\,\textrm{.}\end{align}\right. | 
If we collect x onto one side, we end up with
| \displaystyle \left\{\begin{align}
 x &= \frac{\pi}{20} + \frac{n\pi}{2}\,,\\[5pt] x &= -\frac{\pi }{30}+\frac{n\pi}{3}\,, \end{align}\right.  | 
where n is an arbitrary integer.

