Lösung 4.4:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 5: Zeile 5:
We obtain all solutions to the equation when we add integer multiples of <math>2\pi\, </math>,
We obtain all solutions to the equation when we add integer multiples of <math>2\pi\, </math>,
-
{{Displayed math||<math>x = \frac{\pi}{5} + 2n\pi\qquad\text{and}\qquad x = \frac{4\pi}{5} + 2n\pi\,,</math>}}
+
{{Abgesetzte Formel||<math>x = \frac{\pi}{5} + 2n\pi\qquad\text{and}\qquad x = \frac{4\pi}{5} + 2n\pi\,,</math>}}
where ''n'' is an arbitrary integer.
where ''n'' is an arbitrary integer.

Version vom 08:59, 22. Okt. 2008

We see directly that \displaystyle x = \pi/5 is a solution to the equation, and using the unit circle we can also draw the conclusion that \displaystyle x = \pi - \pi/5 = 4\pi/5 is the only other solution between \displaystyle 0 and \displaystyle 2\pi\,.

We obtain all solutions to the equation when we add integer multiples of \displaystyle 2\pi\, ,

\displaystyle x = \frac{\pi}{5} + 2n\pi\qquad\text{and}\qquad x = \frac{4\pi}{5} + 2n\pi\,,

where n is an arbitrary integer.