Lösung 4.4:3a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 7: Zeile 7:
We obtain all solutions to the equation if we add multiples of <math>2\pi</math> to the two solutions above,
We obtain all solutions to the equation if we add multiples of <math>2\pi</math> to the two solutions above,
-
{{Displayed math||<math>x = \frac{\pi}{6} + 2n\pi\qquad\text{and}\qquad x = \frac{11\pi}{6} + 2n\pi\,,</math>}}
+
{{Abgesetzte Formel||<math>x = \frac{\pi}{6} + 2n\pi\qquad\text{and}\qquad x = \frac{11\pi}{6} + 2n\pi\,,</math>}}
where ''n'' is an arbitrary integer.
where ''n'' is an arbitrary integer.

Version vom 08:58, 22. Okt. 2008

The right-hand side of the equation is a constant, so the equation is in fact a normal trigonometric equation of the type \displaystyle \cos x = a\,.

In this case, we can see directly that one solution is \displaystyle x = \pi/6\,. Using the unit circle, it follows that \displaystyle x = 2\pi - \pi/6 = 11\pi/6\, is the only other solution between \displaystyle 0 and \displaystyle 2\pi\,.

We obtain all solutions to the equation if we add multiples of \displaystyle 2\pi to the two solutions above,

\displaystyle x = \frac{\pi}{6} + 2n\pi\qquad\text{and}\qquad x = \frac{11\pi}{6} + 2n\pi\,,

where n is an arbitrary integer.