Lösung 4.4:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 5: Zeile 5:
If we add multiples of <math>2\pi</math> to these two solutions, we obtain all the solutions
If we add multiples of <math>2\pi</math> to these two solutions, we obtain all the solutions
-
{{Displayed math||<math>x = \frac{\pi}{3}+2n\pi\qquad\text{and}\qquad x = \frac{5\pi }{3}+2n\pi\,,</math>}}
+
{{Abgesetzte Formel||<math>x = \frac{\pi}{3}+2n\pi\qquad\text{and}\qquad x = \frac{5\pi }{3}+2n\pi\,,</math>}}
where ''n'' is an arbitrary integer.
where ''n'' is an arbitrary integer.

Version vom 08:58, 22. Okt. 2008

The equation \displaystyle \cos x= 1/2 has the solution \displaystyle x=\pi/3 in the first quadrant, and the symmetric solution \displaystyle x = 2\pi -\pi/3 = 5\pi/3 in the fourth quadrant.

If we add multiples of \displaystyle 2\pi to these two solutions, we obtain all the solutions

\displaystyle x = \frac{\pi}{3}+2n\pi\qquad\text{and}\qquad x = \frac{5\pi }{3}+2n\pi\,,

where n is an arbitrary integer.