Lösung 4.3:4e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The addition formula for sine gives us that | The addition formula for sine gives us that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.}</math>}} |
Because we know from exercise b that <math>\sin v = \sqrt{1-b^2}</math> we use that | Because we know from exercise b that <math>\sin v = \sqrt{1-b^2}</math> we use that | ||
<math>\cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2}</math> to obtain | <math>\cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2}</math> to obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.}</math>}} |
Version vom 08:55, 22. Okt. 2008
The addition formula for sine gives us that
\displaystyle \sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.} |
Because we know from exercise b that \displaystyle \sin v = \sqrt{1-b^2} we use that \displaystyle \cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2} to obtain
\displaystyle \sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.} |