Lösung 4.3:4d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
With the formula for double angles and the Pythagorean identity <math>\cos^2\!v + \sin^2\!v = 1</math>, we can express <math>\cos 2v</math> in terms of <math>\cos v</math>,
With the formula for double angles and the Pythagorean identity <math>\cos^2\!v + \sin^2\!v = 1</math>, we can express <math>\cos 2v</math> in terms of <math>\cos v</math>,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\cos 2v &= \cos^2\!v - \sin^2\!v\\[5pt]
\cos 2v &= \cos^2\!v - \sin^2\!v\\[5pt]
&= \cos^2\!v - (1-\cos^2\!v)\\[5pt]
&= \cos^2\!v - (1-\cos^2\!v)\\[5pt]

Version vom 08:55, 22. Okt. 2008

With the formula for double angles and the Pythagorean identity \displaystyle \cos^2\!v + \sin^2\!v = 1, we can express \displaystyle \cos 2v in terms of \displaystyle \cos v,

\displaystyle \begin{align}

\cos 2v &= \cos^2\!v - \sin^2\!v\\[5pt] &= \cos^2\!v - (1-\cos^2\!v)\\[5pt] &= 2\cos^2\!v-1\\[5pt] &= 2b^2-1\,\textrm{.} \end{align}