Lösung 4.3:4c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The formula for double angles gives | The formula for double angles gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>\sin 2v=2\sin v\cos v</math>}} |
and from exercise b, we have <math>\sin v = \sqrt{1-b^2}\,</math>. Thus, | and from exercise b, we have <math>\sin v = \sqrt{1-b^2}\,</math>. Thus, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\sin 2v = 2b\sqrt{1-b^2}\,\textrm{.}</math>}} |
Version vom 08:55, 22. Okt. 2008
The formula for double angles gives
\displaystyle \sin 2v=2\sin v\cos v |
and from exercise b, we have \displaystyle \sin v = \sqrt{1-b^2}\,. Thus,
\displaystyle \sin 2v = 2b\sqrt{1-b^2}\,\textrm{.} |