Lösung 4.3:3e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The angle <math>\pi/2+v</math> makes the same angle with the positive ''y''-axis as the angle ''v'' makes with the positive ''x''-axis, and hence we see that the ''x''-coordinate for <math>\pi/2+v</math> is equal to the ''y''-coordinate for ''v'', but with a change of sign, i.e.
The angle <math>\pi/2+v</math> makes the same angle with the positive ''y''-axis as the angle ''v'' makes with the positive ''x''-axis, and hence we see that the ''x''-coordinate for <math>\pi/2+v</math> is equal to the ''y''-coordinate for ''v'', but with a change of sign, i.e.
-
{{Displayed math||<math>\cos \Bigl(\frac{\pi}{2}+v\Bigr) = -\sin v = -a\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\cos \Bigl(\frac{\pi}{2}+v\Bigr) = -\sin v = -a\,\textrm{.}</math>}}
{| align="center"
{| align="center"

Version vom 08:54, 22. Okt. 2008

The angle \displaystyle \pi/2+v makes the same angle with the positive y-axis as the angle v makes with the positive x-axis, and hence we see that the x-coordinate for \displaystyle \pi/2+v is equal to the y-coordinate for v, but with a change of sign, i.e.

\displaystyle \cos \Bigl(\frac{\pi}{2}+v\Bigr) = -\sin v = -a\,\textrm{.}
Angle v Angle π/2 + v