Lösung 4.2:8

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 5: Zeile 5:
Using the definition of cosine, we can work out ''x'' and ''y'' from
Using the definition of cosine, we can work out ''x'' and ''y'' from
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
x &= a\cos \alpha\,,\\[3pt]
x &= a\cos \alpha\,,\\[3pt]
y &= b\cos \beta\,,
y &= b\cos \beta\,,
Zeile 12: Zeile 12:
and, for the same reason, we know that ''z'' satisfies the relation
and, for the same reason, we know that ''z'' satisfies the relation
-
{{Displayed math||<math>z=\ell\cos \gamma\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z=\ell\cos \gamma\,\textrm{.}</math>}}
In addition, we know that the lengths ''x'', ''y'' and ''z'' satisfy the equality
In addition, we know that the lengths ''x'', ''y'' and ''z'' satisfy the equality
-
{{Displayed math||<math>z=x-y\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>z=x-y\,\textrm{.}</math>}}
If we substitute in the expressions for ''x'', ''y'' and ''z'', we obtain the trigonometric equation
If we substitute in the expressions for ''x'', ''y'' and ''z'', we obtain the trigonometric equation
-
{{Displayed math||<math>\ell\cos \gamma = a\cos \alpha -b\cos \beta\,\textrm{,}</math>}}
+
{{Abgesetzte Formel||<math>\ell\cos \gamma = a\cos \alpha -b\cos \beta\,\textrm{,}</math>}}
where <math>\gamma </math> is the only unknown.
where <math>\gamma </math> is the only unknown.

Version vom 08:53, 22. Okt. 2008

We start by drawing three auxiliary triangles, and calling the three vertical sides x, y and z, as shown in the figure.

Using the definition of cosine, we can work out x and y from

\displaystyle \begin{align}

x &= a\cos \alpha\,,\\[3pt] y &= b\cos \beta\,, \end{align}

and, for the same reason, we know that z satisfies the relation

\displaystyle z=\ell\cos \gamma\,\textrm{.}

In addition, we know that the lengths x, y and z satisfy the equality

\displaystyle z=x-y\,\textrm{.}

If we substitute in the expressions for x, y and z, we obtain the trigonometric equation

\displaystyle \ell\cos \gamma = a\cos \alpha -b\cos \beta\,\textrm{,}

where \displaystyle \gamma is the only unknown.