Lösung 4.2:8
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 5: | Zeile 5: | ||
Using the definition of cosine, we can work out ''x'' and ''y'' from | Using the definition of cosine, we can work out ''x'' and ''y'' from | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
x &= a\cos \alpha\,,\\[3pt] | x &= a\cos \alpha\,,\\[3pt] | ||
y &= b\cos \beta\,, | y &= b\cos \beta\,, | ||
Zeile 12: | Zeile 12: | ||
and, for the same reason, we know that ''z'' satisfies the relation | and, for the same reason, we know that ''z'' satisfies the relation | ||
- | {{ | + | {{Abgesetzte Formel||<math>z=\ell\cos \gamma\,\textrm{.}</math>}} |
In addition, we know that the lengths ''x'', ''y'' and ''z'' satisfy the equality | In addition, we know that the lengths ''x'', ''y'' and ''z'' satisfy the equality | ||
- | {{ | + | {{Abgesetzte Formel||<math>z=x-y\,\textrm{.}</math>}} |
If we substitute in the expressions for ''x'', ''y'' and ''z'', we obtain the trigonometric equation | If we substitute in the expressions for ''x'', ''y'' and ''z'', we obtain the trigonometric equation | ||
- | {{ | + | {{Abgesetzte Formel||<math>\ell\cos \gamma = a\cos \alpha -b\cos \beta\,\textrm{,}</math>}} |
where <math>\gamma </math> is the only unknown. | where <math>\gamma </math> is the only unknown. |
Version vom 08:53, 22. Okt. 2008
We start by drawing three auxiliary triangles, and calling the three vertical sides x, y and z, as shown in the figure.
Using the definition of cosine, we can work out x and y from
\displaystyle \begin{align}
x &= a\cos \alpha\,,\\[3pt] y &= b\cos \beta\,, \end{align} |
and, for the same reason, we know that z satisfies the relation
\displaystyle z=\ell\cos \gamma\,\textrm{.} |
In addition, we know that the lengths x, y and z satisfy the equality
\displaystyle z=x-y\,\textrm{.} |
If we substitute in the expressions for x, y and z, we obtain the trigonometric equation
\displaystyle \ell\cos \gamma = a\cos \alpha -b\cos \beta\,\textrm{,} |
where \displaystyle \gamma is the only unknown.