Lösung 4.2:5c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we express the angle 330° in radians, we obtain
If we express the angle 330° in radians, we obtain
-
{{Displayed math||<math>330^{\circ} = 330^{\circ}\cdot \frac{\pi}{180^{\circ}}\ \text{radians} = \frac{11\pi}{6}\ \text{radians}</math>}}
+
{{Abgesetzte Formel||<math>330^{\circ} = 330^{\circ}\cdot \frac{\pi}{180^{\circ}}\ \text{radians} = \frac{11\pi}{6}\ \text{radians}</math>}}
and from exercise 3.3:1g, we know that
and from exercise 3.3:1g, we know that
-
{{Displayed math||<math>\cos 330^{\circ} = \cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\cos 330^{\circ} = \cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}\,\textrm{.}</math>}}

Version vom 08:53, 22. Okt. 2008

If we express the angle 330° in radians, we obtain

\displaystyle 330^{\circ} = 330^{\circ}\cdot \frac{\pi}{180^{\circ}}\ \text{radians} = \frac{11\pi}{6}\ \text{radians}

and from exercise 3.3:1g, we know that

\displaystyle \cos 330^{\circ} = \cos \frac{11\pi}{6} = \frac{\sqrt{3}}{2}\,\textrm{.}