Lösung 4.2:1f

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 5: Zeile 5:
If we write the tangent for the angle, this gives a relation which contains ''x'' as the only unknown,
If we write the tangent for the angle, this gives a relation which contains ''x'' as the only unknown,
-
{{Displayed math||<math>\tan 50^{\circ} = \frac{19}{x}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\tan 50^{\circ} = \frac{19}{x}\,\textrm{.}</math>}}
This gives
This gives
-
{{Displayed math||<math>x=\frac{19}{\tan 50^{\circ }}\quad ({}\approx 15\textrm{.}9)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x=\frac{19}{\tan 50^{\circ }}\quad ({}\approx 15\textrm{.}9)\,\textrm{.}</math>}}

Version vom 08:50, 22. Okt. 2008

The side adjacent to the angle of 50° is marked x and the opposite is the side of length 19.

If we write the tangent for the angle, this gives a relation which contains x as the only unknown,

\displaystyle \tan 50^{\circ} = \frac{19}{x}\,\textrm{.}

This gives

\displaystyle x=\frac{19}{\tan 50^{\circ }}\quad ({}\approx 15\textrm{.}9)\,\textrm{.}