Lösung 4.2:1d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 5: | Zeile 5: | ||
By writing the quotient for <math>\cos 20^{\circ}</math>, we obtain the relation | By writing the quotient for <math>\cos 20^{\circ}</math>, we obtain the relation | ||
- | {{ | + | {{Abgesetzte Formel||<math>\cos 20^{\circ} = \frac{16}{x}</math>}} |
and this gives | and this gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>x = \frac{16}{\cos20^{\circ}}\quad ({}\approx 17\textrm{.}0)\,\textrm{.}</math>}} |
Version vom 08:50, 22. Okt. 2008
The side marked x is the hypotenuse in the right-angled triangle and the side of length 16 is the adjacent to the angle of 20°.
By writing the quotient for \displaystyle \cos 20^{\circ}, we obtain the relation
\displaystyle \cos 20^{\circ} = \frac{16}{x} |
and this gives
\displaystyle x = \frac{16}{\cos20^{\circ}}\quad ({}\approx 17\textrm{.}0)\,\textrm{.} |