Lösung 4.1:8

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Because the wheel's circumference is
Because the wheel's circumference is
-
{{Displayed math||<math>2\pi\cdot\text{(radius)} = 2\pi\cdot 0\textrm{.}5\ \text{metres} = \pi\ \text{metres}</math>}}
+
{{Abgesetzte Formel||<math>2\pi\cdot\text{(radius)} = 2\pi\cdot 0\textrm{.}5\ \text{metres} = \pi\ \text{metres}</math>}}
the wheel turns <math>\pi</math> metres on each revolution, and in 10 metres the wheel therefore turns
the wheel turns <math>\pi</math> metres on each revolution, and in 10 metres the wheel therefore turns
-
{{Displayed math||<math>\frac{10\ \text{metres}}{\pi\ \text{metres}} = \frac{10}{\pi }\ \textrm{revolutions}\approx 3\textrm{.}2\ \textrm{revolutions.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{10\ \text{metres}}{\pi\ \text{metres}} = \frac{10}{\pi }\ \textrm{revolutions}\approx 3\textrm{.}2\ \textrm{revolutions.}</math>}}

Version vom 08:49, 22. Okt. 2008

Because the wheel's circumference is

\displaystyle 2\pi\cdot\text{(radius)} = 2\pi\cdot 0\textrm{.}5\ \text{metres} = \pi\ \text{metres}

the wheel turns \displaystyle \pi metres on each revolution, and in 10 metres the wheel therefore turns

\displaystyle \frac{10\ \text{metres}}{\pi\ \text{metres}} = \frac{10}{\pi }\ \textrm{revolutions}\approx 3\textrm{.}2\ \textrm{revolutions.}