Lösung 4.1:7d

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
We rewrite the equation in standard form by completing the square for the ''x''- and ''y''-terms,
We rewrite the equation in standard form by completing the square for the ''x''- and ''y''-terms,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
x^{2} - 2x &= (x-1)^2 - 1^2\,,\\[5pt]
x^{2} - 2x &= (x-1)^2 - 1^2\,,\\[5pt]
y^{2} + 2y &= (y+1)^2 - 1^2\,\textrm{.}
y^{2} + 2y &= (y+1)^2 - 1^2\,\textrm{.}
Zeile 8: Zeile 8:
Now, the equation is
Now, the equation is
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(x-1)^2 - 1 + (y+1)^2 - 1 &= -2\\
(x-1)^2 - 1 + (y+1)^2 - 1 &= -2\\
\Leftrightarrow\quad (x-1)^2 + (y+1)^2 &= 0\,\textrm{.}
\Leftrightarrow\quad (x-1)^2 + (y+1)^2 &= 0\,\textrm{.}

Version vom 08:49, 22. Okt. 2008

We rewrite the equation in standard form by completing the square for the x- and y-terms,

\displaystyle \begin{align}

x^{2} - 2x &= (x-1)^2 - 1^2\,,\\[5pt] y^{2} + 2y &= (y+1)^2 - 1^2\,\textrm{.} \end{align}

Now, the equation is

\displaystyle \begin{align}

(x-1)^2 - 1 + (y+1)^2 - 1 &= -2\\ \Leftrightarrow\quad (x-1)^2 + (y+1)^2 &= 0\,\textrm{.} \end{align}

The only point which satisfies this equation is \displaystyle (x,y) = (1,-1) because, for all other values of x and y, the left-hand side is strictly positive and therefore not zero.


Image:4_1_7_d.gif