Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 4.1:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 3: Zeile 3:
The side of length 13 is the hypotenuse in the triangle, and the Pythagorean theorem therefore gives us that
The side of length 13 is the hypotenuse in the triangle, and the Pythagorean theorem therefore gives us that
-
{{Displayed math||<math>13^{2} = 12^{2} + x^{2}\,,</math>}}
+
{{Abgesetzte Formel||<math>13^{2} = 12^{2} + x^{2}\,,</math>}}
i.e.
i.e.
-
{{Displayed math||<math>x^{2}=13^{2}-12^{2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x^{2}=13^{2}-12^{2}\,\textrm{.}</math>}}
This means that
This means that
-
{{Displayed math||<math>x = \sqrt{13^{2}-12^{2}} = \sqrt{169-144} = \sqrt{25} = 5\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x = \sqrt{13^{2}-12^{2}} = \sqrt{169-144} = \sqrt{25} = 5\,\textrm{.}</math>}}

Version vom 08:47, 22. Okt. 2008

Because one of the angles in the triangle is 90°, we have a right-angled triangle and can use the Pythagorean theorem to set up a relation between the triangle's sides.

The side of length 13 is the hypotenuse in the triangle, and the Pythagorean theorem therefore gives us that

132=122+x2

i.e.

x2=132122.

This means that

x=132122=169144=25=5.