Lösung 4.1:3a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
|||
Zeile 3: | Zeile 3: | ||
With the help of the Pythagorean theorem, we can write a relation between the sides of a right-angled triangle | With the help of the Pythagorean theorem, we can write a relation between the sides of a right-angled triangle | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2 = 30^2 + 40^2\,\textrm{.}</math>}} |
This equation gives us that | This equation gives us that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
x &= \sqrt{30^{2}+40^{2}} = \sqrt{900+1600} = \sqrt{2500}\\[5pt] | x &= \sqrt{30^{2}+40^{2}} = \sqrt{900+1600} = \sqrt{2500}\\[5pt] | ||
&= \sqrt{25\cdot 100} = \sqrt{5^{2}\cdot 10^{2}} = 5\cdot 10 = 50\,\textrm{.} | &= \sqrt{25\cdot 100} = \sqrt{5^{2}\cdot 10^{2}} = 5\cdot 10 = 50\,\textrm{.} | ||
\end{align}</math>}} | \end{align}</math>}} |
Version vom 08:47, 22. Okt. 2008
A right-angled triangle is a triangle in which one of the angles is 90°. The side which is opposite the 90°-angle is called the hypotenuse (marked x in the triangle) and the others are called opposite and the adjacent.
With the help of the Pythagorean theorem, we can write a relation between the sides of a right-angled triangle
\displaystyle x^2 = 30^2 + 40^2\,\textrm{.} |
This equation gives us that
\displaystyle \begin{align}
x &= \sqrt{30^{2}+40^{2}} = \sqrt{900+1600} = \sqrt{2500}\\[5pt] &= \sqrt{25\cdot 100} = \sqrt{5^{2}\cdot 10^{2}} = 5\cdot 10 = 50\,\textrm{.} \end{align} |