Lösung 3.4:2b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we write the equation as
If we write the equation as
-
{{Displayed math||<math>\bigl(e^{x}\bigr)^{2} + e^{x} = 4</math>}}
+
{{Abgesetzte Formel||<math>\bigl(e^{x}\bigr)^{2} + e^{x} = 4</math>}}
we see that <math>x</math> appears only in the combination <math>e^{x}</math> and it is therefore appropriate to treat <math>e^{x}</math> as a new unknown in the equation and then, when we have obtained the value of <math>e^{x}</math>, we can calculate the corresponding value of <math>x</math> by simply taking the logarithm.
we see that <math>x</math> appears only in the combination <math>e^{x}</math> and it is therefore appropriate to treat <math>e^{x}</math> as a new unknown in the equation and then, when we have obtained the value of <math>e^{x}</math>, we can calculate the corresponding value of <math>x</math> by simply taking the logarithm.
Zeile 7: Zeile 7:
For clarity, we set <math>t=e^{x}</math>, so that the equation can be written as
For clarity, we set <math>t=e^{x}</math>, so that the equation can be written as
-
{{Displayed math||<math>t^{2}+t=4</math>}}
+
{{Abgesetzte Formel||<math>t^{2}+t=4</math>}}
and we solve this second-degree equation by completing the square,
and we solve this second-degree equation by completing the square,
-
{{Displayed math||<math>t^{2}+t = \Bigl( t+\frac{1}{2} \Bigr)^{2}-\Bigl( \frac{1}{2} \Bigr)^{2} = \Bigl( t+\frac{1}{2} \Bigr)^{2} - \frac{1}{4}\,,</math>}}
+
{{Abgesetzte Formel||<math>t^{2}+t = \Bigl( t+\frac{1}{2} \Bigr)^{2}-\Bigl( \frac{1}{2} \Bigr)^{2} = \Bigl( t+\frac{1}{2} \Bigr)^{2} - \frac{1}{4}\,,</math>}}
which gives
which gives
-
{{Displayed math||<math>\Bigl(t+\frac{1}{2}\Bigr)^{2} - \frac{1}{4} = 4\quad \Leftrightarrow \quad t = -\frac{1}{2}\pm \frac{\sqrt{17}}{2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\Bigl(t+\frac{1}{2}\Bigr)^{2} - \frac{1}{4} = 4\quad \Leftrightarrow \quad t = -\frac{1}{2}\pm \frac{\sqrt{17}}{2}\,\textrm{.}</math>}}
These two roots give us two possible values for <math>e^{x}</math>,
These two roots give us two possible values for <math>e^{x}</math>,
-
{{Displayed math||<math>e^{x}=-\frac{1}{2}-\frac{\sqrt{17}}{2}\qquad\text{or}\qquad e^{x} = -\frac{1}{2}+\frac{\sqrt{17}}{2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>e^{x}=-\frac{1}{2}-\frac{\sqrt{17}}{2}\qquad\text{or}\qquad e^{x} = -\frac{1}{2}+\frac{\sqrt{17}}{2}\,\textrm{.}</math>}}
In the first case, the right-hand side is negative and because "''e'' raised to anything" can never be negative, there is no ''x'' that can satisfy this equality. The other case, on the other hand, has a positive right-hand side (because
In the first case, the right-hand side is negative and because "''e'' raised to anything" can never be negative, there is no ''x'' that can satisfy this equality. The other case, on the other hand, has a positive right-hand side (because
<math>\sqrt{17}>1</math>) and we can take the logarithm of both sides to obtain
<math>\sqrt{17}>1</math>) and we can take the logarithm of both sides to obtain
-
{{Displayed math||<math>x=\ln \Bigl(\frac{\sqrt{17}}{2}-\frac{1}{2}\Bigr)\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x=\ln \Bigl(\frac{\sqrt{17}}{2}-\frac{1}{2}\Bigr)\,\textrm{.}</math>}}
Note: It is a little tricky to check the answer to the original equation, so we can be satisfied with substituting <math>t=\sqrt{17}/2-1/2</math> into the equation <math>t^2+t=4</math>,
Note: It is a little tricky to check the answer to the original equation, so we can be satisfied with substituting <math>t=\sqrt{17}/2-1/2</math> into the equation <math>t^2+t=4</math>,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\text{LHS}
\text{LHS}
&= \Bigl(\frac{\sqrt{17}}{2}-\frac{1}{2}\Bigr)^2 + \Bigl(\frac{\sqrt{17}}{2}-\frac{1}{2}\Bigr)\\[5pt]
&= \Bigl(\frac{\sqrt{17}}{2}-\frac{1}{2}\Bigr)^2 + \Bigl(\frac{\sqrt{17}}{2}-\frac{1}{2}\Bigr)\\[5pt]

Version vom 08:46, 22. Okt. 2008

If we write the equation as

\displaystyle \bigl(e^{x}\bigr)^{2} + e^{x} = 4

we see that \displaystyle x appears only in the combination \displaystyle e^{x} and it is therefore appropriate to treat \displaystyle e^{x} as a new unknown in the equation and then, when we have obtained the value of \displaystyle e^{x}, we can calculate the corresponding value of \displaystyle x by simply taking the logarithm.

For clarity, we set \displaystyle t=e^{x}, so that the equation can be written as

\displaystyle t^{2}+t=4

and we solve this second-degree equation by completing the square,

\displaystyle t^{2}+t = \Bigl( t+\frac{1}{2} \Bigr)^{2}-\Bigl( \frac{1}{2} \Bigr)^{2} = \Bigl( t+\frac{1}{2} \Bigr)^{2} - \frac{1}{4}\,,

which gives

\displaystyle \Bigl(t+\frac{1}{2}\Bigr)^{2} - \frac{1}{4} = 4\quad \Leftrightarrow \quad t = -\frac{1}{2}\pm \frac{\sqrt{17}}{2}\,\textrm{.}

These two roots give us two possible values for \displaystyle e^{x},

\displaystyle e^{x}=-\frac{1}{2}-\frac{\sqrt{17}}{2}\qquad\text{or}\qquad e^{x} = -\frac{1}{2}+\frac{\sqrt{17}}{2}\,\textrm{.}

In the first case, the right-hand side is negative and because "e raised to anything" can never be negative, there is no x that can satisfy this equality. The other case, on the other hand, has a positive right-hand side (because \displaystyle \sqrt{17}>1) and we can take the logarithm of both sides to obtain

\displaystyle x=\ln \Bigl(\frac{\sqrt{17}}{2}-\frac{1}{2}\Bigr)\,\textrm{.}


Note: It is a little tricky to check the answer to the original equation, so we can be satisfied with substituting \displaystyle t=\sqrt{17}/2-1/2 into the equation \displaystyle t^2+t=4,

\displaystyle \begin{align}

\text{LHS} &= \Bigl(\frac{\sqrt{17}}{2}-\frac{1}{2}\Bigr)^2 + \Bigl(\frac{\sqrt{17}}{2}-\frac{1}{2}\Bigr)\\[5pt] &= \frac{17}{4}-2\cdot \frac{1}{2}\cdot \frac{\sqrt{17}}{2}+\frac{1}{4}+\frac{\sqrt{17}}{2}-\frac{1}{2}\\[5pt] &= \frac{17}{4}+\frac{1}{4}-\frac{1}{2}\\[5pt] &= \frac{17+1-2}{4}\\[5pt] &=\frac{16}{4}\\[5pt] &= 4\\[5pt] &= \text{RHS.} \end{align}