Lösung 3.4:1c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 3: Zeile 3:
First, we take logs of both sides,
First, we take logs of both sides,
-
{{Displayed math||<math>\ln\bigl(3e^x\bigr) = \ln\bigl(7\cdot 2^x\bigr)\,\textrm{,}</math>}}
+
{{Abgesetzte Formel||<math>\ln\bigl(3e^x\bigr) = \ln\bigl(7\cdot 2^x\bigr)\,\textrm{,}</math>}}
and use the log laws to make <math>x</math> more accessible,
and use the log laws to make <math>x</math> more accessible,
-
{{Displayed math||<math>\ln 3 + x\cdot \ln e = \ln 7 + x\cdot \ln 2\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\ln 3 + x\cdot \ln e = \ln 7 + x\cdot \ln 2\,\textrm{.}</math>}}
Then, collect together the <math>x</math> terms on the left-hand side,
Then, collect together the <math>x</math> terms on the left-hand side,
-
{{Displayed math||<math>x(\ln e-\ln 2) = \ln 7-\ln 3\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x(\ln e-\ln 2) = \ln 7-\ln 3\,\textrm{.}</math>}}
The solution is now
The solution is now
-
{{Displayed math||<math>x = \frac{\ln 7-\ln 3}{\ln e-\ln 2} = \frac{\ln 7-\ln 3}{1-\ln 2}\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x = \frac{\ln 7-\ln 3}{\ln e-\ln 2} = \frac{\ln 7-\ln 3}{1-\ln 2}\,\textrm{.}</math>}}

Version vom 08:45, 22. Okt. 2008

The equation has the same form as the equation in exercise b and we can therefore use the same strategy.

First, we take logs of both sides,

\displaystyle \ln\bigl(3e^x\bigr) = \ln\bigl(7\cdot 2^x\bigr)\,\textrm{,}

and use the log laws to make \displaystyle x more accessible,

\displaystyle \ln 3 + x\cdot \ln e = \ln 7 + x\cdot \ln 2\,\textrm{.}

Then, collect together the \displaystyle x terms on the left-hand side,

\displaystyle x(\ln e-\ln 2) = \ln 7-\ln 3\,\textrm{.}

The solution is now

\displaystyle x = \frac{\ln 7-\ln 3}{\ln e-\ln 2} = \frac{\ln 7-\ln 3}{1-\ln 2}\,\textrm{.}