Lösung 3.3:3d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| We write the argument of <math>\log_{3}</math> as a power of 3, | We write the argument of <math>\log_{3}</math> as a power of 3, | ||
| - | {{ | + | {{Abgesetzte Formel||<math>9\cdot 3^{1/3} = 3^2\cdot 3^{1/3} = 3^{2+1/3} = 3^{7/3}\,,</math>}} | 
| and then simplify the expression with the logarithm laws | and then simplify the expression with the logarithm laws | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\log _3 (9\cdot 3^{1/3}) = \log_3 3^{7/3} = \frac{7}{3}\cdot \log_3 3 = \frac{7}{3}\cdot 1 = \frac{7}{3}\,\textrm{.}</math>}} | 
Version vom 08:43, 22. Okt. 2008
We write the argument of \displaystyle \log_{3} as a power of 3,
| \displaystyle 9\cdot 3^{1/3} = 3^2\cdot 3^{1/3} = 3^{2+1/3} = 3^{7/3}\,, | 
and then simplify the expression with the logarithm laws
| \displaystyle \log _3 (9\cdot 3^{1/3}) = \log_3 3^{7/3} = \frac{7}{3}\cdot \log_3 3 = \frac{7}{3}\cdot 1 = \frac{7}{3}\,\textrm{.} | 
 
		  