Lösung 3.3:2h
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 1: | Zeile 1: | ||
| The argument in the logarithm can be rewritten as <math>\frac{1}{10^{2}} = 10^{-2}</math> and then the log law <math>\lg a^b = b\lg a</math> gives the rest | The argument in the logarithm can be rewritten as <math>\frac{1}{10^{2}} = 10^{-2}</math> and then the log law <math>\lg a^b = b\lg a</math> gives the rest | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.}</math>}} | 
Version vom 08:42, 22. Okt. 2008
The argument in the logarithm can be rewritten as \displaystyle \frac{1}{10^{2}} = 10^{-2} and then the log law \displaystyle \lg a^b = b\lg a gives the rest
| \displaystyle \lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.} | 
 
		  