Lösung 3.3:2f
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | K  (Robot: Automated text replacement  (-{{Displayed math +{{Abgesetzte Formel)) | ||
| Zeile 9: | Zeile 9: | ||
| In our case, we have | In our case, we have | ||
| - | {{ | + | {{Abgesetzte Formel||<math>\lg 10^{3} = 3\cdot \lg 10 = 3\cdot 1 = 3\,\textrm{.}</math>}} | 
Version vom 08:42, 22. Okt. 2008
Instead of always going back to the definition of the logarithm, it is better to learn to work with the log laws,
- \displaystyle \ \lg (ab) = \lg a + \lg b
 
- \displaystyle \ \lg a^{b} = b\lg a
 
and to simplify expressions first. By working in this way, one only needs, in principle, to learn that \displaystyle \lg 10 = 1\,.
In our case, we have
| \displaystyle \lg 10^{3} = 3\cdot \lg 10 = 3\cdot 1 = 3\,\textrm{.} | 
 
		  