Lösung 3.2:6
Aus Online Mathematik Brückenkurs 1
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 3: | Zeile 3: | ||
Squaring once gives | Squaring once gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>\bigl(\sqrt{x+1}+\sqrt{x+5}\,\bigr)^2 = 4^2</math>}} |
and expanding the left-hand side gives | and expanding the left-hand side gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>\bigl(\sqrt{x+1}\bigr)^2 + 2\sqrt{x+1}\sqrt{x+5} + \bigl(\sqrt{x+5}\bigr)^2 = 16</math>}} |
which, after simplification, results in the equation | which, after simplification, results in the equation | ||
- | {{ | + | {{Abgesetzte Formel||<math>x+1+2\sqrt{x+1}\sqrt{x+5}+x+5=16\,\textrm{.}</math>}} |
Moving all the terms, other than the root term, over to the right-hand side, | Moving all the terms, other than the root term, over to the right-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>2\sqrt{x+1}\sqrt{x+5}=-2x+10</math>}} |
and squaring once again, | and squaring once again, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\bigl(2\sqrt{x+1}\sqrt{x+5}\bigr)^2 = (-2x+10)^2</math>}} |
at last gives an equation that is completely free of root signs, | at last gives an equation that is completely free of root signs, | ||
- | {{ | + | {{Abgesetzte Formel||<math>4(x+1)(x+5) = (-2x+10)^{2}\,\textrm{.}</math>}} |
Expand both sides | Expand both sides | ||
- | {{ | + | {{Abgesetzte Formel||<math>4(x^{2}+6x+5) = 4x^2-40x+100</math>}} |
and then cancel the common ''x''²-term, | and then cancel the common ''x''²-term, | ||
- | {{ | + | {{Abgesetzte Formel||<math>24x+20=-40x+100\,\textrm{.}</math>}} |
We can write this equation as <math>64x = 80</math>, which gives | We can write this equation as <math>64x = 80</math>, which gives | ||
- | {{ | + | {{Abgesetzte Formel||<math>x = \frac{80}{64} = \frac{2^{4}\cdot 5}{2^{6}} = \frac{5}{2^{2}} = \frac{5}{4}\,\textrm{.}</math>}} |
Because we squared our original equation (twice), we have to verify the solution | Because we squared our original equation (twice), we have to verify the solution | ||
<math>x=5/4</math> in order to be able to rule out that we have a spurious root: | <math>x=5/4</math> in order to be able to rule out that we have a spurious root: | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{LHS} &= \sqrt{\frac{5}{4}+1} + \sqrt{\frac{5}{4}+5} = \sqrt{\frac{9}{4}} + \sqrt{\frac{25}{4}}\\[10pt] | \text{LHS} &= \sqrt{\frac{5}{4}+1} + \sqrt{\frac{5}{4}+5} = \sqrt{\frac{9}{4}} + \sqrt{\frac{25}{4}}\\[10pt] | ||
&= \frac{3}{2} + \frac{5}{2} = \frac{8}{2} = 4 = \text{RHS}\,\textrm{.} | &= \frac{3}{2} + \frac{5}{2} = \frac{8}{2} = 4 = \text{RHS}\,\textrm{.} |
Version vom 08:41, 22. Okt. 2008
This equation differs from earlier examples in that it contains two root terms, in which case it is not possible to get rid of all square roots at once with one squaring, but rather we need to work in two steps.
Squaring once gives
\displaystyle \bigl(\sqrt{x+1}+\sqrt{x+5}\,\bigr)^2 = 4^2 |
and expanding the left-hand side gives
\displaystyle \bigl(\sqrt{x+1}\bigr)^2 + 2\sqrt{x+1}\sqrt{x+5} + \bigl(\sqrt{x+5}\bigr)^2 = 16 |
which, after simplification, results in the equation
\displaystyle x+1+2\sqrt{x+1}\sqrt{x+5}+x+5=16\,\textrm{.} |
Moving all the terms, other than the root term, over to the right-hand side,
\displaystyle 2\sqrt{x+1}\sqrt{x+5}=-2x+10 |
and squaring once again,
\displaystyle \bigl(2\sqrt{x+1}\sqrt{x+5}\bigr)^2 = (-2x+10)^2 |
at last gives an equation that is completely free of root signs,
\displaystyle 4(x+1)(x+5) = (-2x+10)^{2}\,\textrm{.} |
Expand both sides
\displaystyle 4(x^{2}+6x+5) = 4x^2-40x+100 |
and then cancel the common x²-term,
\displaystyle 24x+20=-40x+100\,\textrm{.} |
We can write this equation as \displaystyle 64x = 80, which gives
\displaystyle x = \frac{80}{64} = \frac{2^{4}\cdot 5}{2^{6}} = \frac{5}{2^{2}} = \frac{5}{4}\,\textrm{.} |
Because we squared our original equation (twice), we have to verify the solution \displaystyle x=5/4 in order to be able to rule out that we have a spurious root:
\displaystyle \begin{align}
\text{LHS} &= \sqrt{\frac{5}{4}+1} + \sqrt{\frac{5}{4}+5} = \sqrt{\frac{9}{4}} + \sqrt{\frac{25}{4}}\\[10pt] &= \frac{3}{2} + \frac{5}{2} = \frac{8}{2} = 4 = \text{RHS}\,\textrm{.} \end{align} |
Thus, the equation has the solution \displaystyle x=5/4\,.