Lösung 2.3:6c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we complete the square of the expression, we have that
If we complete the square of the expression, we have that
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
x^{2} - 5x + 7 &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} + 7\\[5pt]
x^{2} - 5x + 7 &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} + 7\\[5pt]
&= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{28}{4}\\[5pt]
&= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{28}{4}\\[5pt]

Version vom 08:34, 22. Okt. 2008

If we complete the square of the expression, we have that

\displaystyle \begin{align}

x^{2} - 5x + 7 &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \Bigl(\frac{5}{2}\Bigr)^{2} + 7\\[5pt] &= \Bigl(x-\frac{5}{2}\Bigr)^{2} - \frac{25}{4} + \frac{28}{4}\\[5pt] &= \Bigl(x-\frac{5}{2}\Bigr)^{2} + \frac{3}{4} \end{align}

and because \displaystyle \bigl(x-\tfrac{5}{2}\bigr)^{2} is a quadratic, this term assumes a minimal value zero when \displaystyle x=5/2\,. This shows that the polynomial's smallest value is \displaystyle \tfrac{3}{4}.