Lösung 2.3:2e
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Write the equation in normalized form by dividing both sides by 5, | Write the equation in normalized form by dividing both sides by 5, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^{2}+\frac{2}{5}x-\frac{3}{5}=0\,\textrm{.}</math>}} |
Complete the square on the left-hand side, | Complete the square on the left-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
x^{2}+\frac{2}{5}x-\frac{3}{5} | x^{2}+\frac{2}{5}x-\frac{3}{5} | ||
&= \Bigl(x+\frac{2/5}{2}\Bigr)^{2} - \Bigl(\frac{2/5}{2}\Bigr)^{2} - \frac{3}{5}\\[5pt] | &= \Bigl(x+\frac{2/5}{2}\Bigr)^{2} - \Bigl(\frac{2/5}{2}\Bigr)^{2} - \frac{3}{5}\\[5pt] | ||
Zeile 15: | Zeile 15: | ||
The equation is now rewritten as | The equation is now rewritten as | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left( x+\frac{1}{5} \right)^{2}=\frac{16}{25}\,\textrm{,}</math>}} |
and taking the root gives the solutions | and taking the root gives the solutions |
Version vom 08:32, 22. Okt. 2008
Write the equation in normalized form by dividing both sides by 5,
\displaystyle x^{2}+\frac{2}{5}x-\frac{3}{5}=0\,\textrm{.} |
Complete the square on the left-hand side,
\displaystyle \begin{align}
x^{2}+\frac{2}{5}x-\frac{3}{5} &= \Bigl(x+\frac{2/5}{2}\Bigr)^{2} - \Bigl(\frac{2/5}{2}\Bigr)^{2} - \frac{3}{5}\\[5pt] &= \Bigl(x+\frac{1}{5}\Bigr)^{2} - \Bigl(\frac{1}{5}\Bigr)^{2} - \frac{3}{5}\\[5pt] &= \Bigl(x+\frac{1}{5}\Bigr)^{2} - \frac{1}{25} - \frac{3\cdot 5}{25}\\[5pt] &= \Bigl(x+\frac{1}{5}\Bigr)^{2} - \frac{16}{25}\,\textrm{.} \end{align} |
The equation is now rewritten as
\displaystyle \left( x+\frac{1}{5} \right)^{2}=\frac{16}{25}\,\textrm{,} |
and taking the root gives the solutions
- \displaystyle x+\tfrac{1}{5} = \sqrt{\tfrac{16}{25}} = \tfrac{4}{5} because \displaystyle \bigl(\tfrac{4}{5}\bigr)^{2} = \tfrac{16}{25}\,, which gives \displaystyle x=-\tfrac{1}{5}+\tfrac{4}{5}=\tfrac{3}{5},
- \displaystyle x+\tfrac{1}{5} = -\sqrt{\tfrac{16}{25}} = -\tfrac{4}{5}\,, which gives \displaystyle x = -\tfrac{1}{5}-\tfrac{4}{5}=-1\,\textrm{.}
Finally, we check the answer by substituting \displaystyle x=-1 and \displaystyle x=3/5 into the equation:
- x = 1: \displaystyle \ \text{LHS} = 5\cdot (-1)^{2} + 2\cdot (-1) - 3 = 5 - 2 - 3 = 0 = \text{RHS,}
- x = 3/5: \displaystyle \ \text{LHS} = 5\cdot\bigl(\tfrac{3}{5}\bigr)^{2} + 2\cdot\bigl(\tfrac{3}{5}\bigr) - 3 = 5\cdot\tfrac{9}{25} + \tfrac{6}{5} - \tfrac{3\cdot 5}{5} = 0 = \text{RHS.}