Lösung 2.2:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
Because the point of intersection lies on both lines, it must satisfy the equations of both lines
Because the point of intersection lies on both lines, it must satisfy the equations of both lines
-
{{Displayed math||<math>y=-x+5\qquad\text{and}\qquad x=0\,,</math>}}
+
{{Abgesetzte Formel||<math>y=-x+5\qquad\text{and}\qquad x=0\,,</math>}}
where <math>x=0</math> is the equation of the ''y''-axis. Substituting the second equation, <math>x=0</math>, into the first equation gives <math>y=-0+5=5</math>. This means that the point of intersection is (0,5).
where <math>x=0</math> is the equation of the ''y''-axis. Substituting the second equation, <math>x=0</math>, into the first equation gives <math>y=-0+5=5</math>. This means that the point of intersection is (0,5).

Version vom 08:29, 22. Okt. 2008

Because the point of intersection lies on both lines, it must satisfy the equations of both lines

\displaystyle y=-x+5\qquad\text{and}\qquad x=0\,,

where \displaystyle x=0 is the equation of the y-axis. Substituting the second equation, \displaystyle x=0, into the first equation gives \displaystyle y=-0+5=5. This means that the point of intersection is (0,5).


Image:2_2_6_b.gif