Lösung 2.2:6a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 3: | Zeile 3: | ||
If the point of intersection has coordinates (''x'',''y''), then | If the point of intersection has coordinates (''x'',''y''), then | ||
- | {{ | + | {{Abgesetzte Formel|| |
<math>\left\{\begin{align} y&=3x+5\,,\\ y&=0\,\textrm{.}\qquad\quad\text{(x-axis)}\end{align}\right.</math>}} | <math>\left\{\begin{align} y&=3x+5\,,\\ y&=0\,\textrm{.}\qquad\quad\text{(x-axis)}\end{align}\right.</math>}} | ||
If we substitute <math>y=0</math> into the first equation, we obtain | If we substitute <math>y=0</math> into the first equation, we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>0=3x+5,\qquad\text{i.e.}\quad x=-\frac{5}{3}\,\textrm{.}</math>}} |
The point of intersection is (-5/3,0). | The point of intersection is (-5/3,0). |
Version vom 08:29, 22. Okt. 2008
According to the definition, the point of intersection between two lines is that point which lies on both lines; it must therefore satisfy the equations of both lines.
If the point of intersection has coordinates (x,y), then
\displaystyle \left\{\begin{align} y&=3x+5\,,\\ y&=0\,\textrm{.}\qquad\quad\text{(x-axis)}\end{align}\right. |
If we substitute \displaystyle y=0 into the first equation, we obtain
\displaystyle 0=3x+5,\qquad\text{i.e.}\quad x=-\frac{5}{3}\,\textrm{.} |
The point of intersection is (-5/3,0).