Lösung 2.2:3b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
First, we move all the terms over to the left-hand side,
First, we move all the terms over to the left-hand side,
-
{{Displayed math||<math>\frac{4x}{4x-7}-\frac{1}{2x-3}-1=0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{4x}{4x-7}-\frac{1}{2x-3}-1=0\,\textrm{.}</math>}}
Then, we multiply the top and bottom of all three terms by appropriate factors so that they have the same common denominator, in the following way,
Then, we multiply the top and bottom of all three terms by appropriate factors so that they have the same common denominator, in the following way,
-
{{Displayed math||<math>\frac{4x}{4x-7}\cdot\frac{2x-3}{2x-3} - \frac{1}{2x-3}\cdot\frac{4x-7}{4x-7} - \frac{(2x-3)(4x-7)}{(2x-3)(4x-7)} = 0</math>}}
+
{{Abgesetzte Formel||<math>\frac{4x}{4x-7}\cdot\frac{2x-3}{2x-3} - \frac{1}{2x-3}\cdot\frac{4x-7}{4x-7} - \frac{(2x-3)(4x-7)}{(2x-3)(4x-7)} = 0</math>}}
and so that we can rewrite the left-hand side giving
and so that we can rewrite the left-hand side giving
-
{{Displayed math||<math>\frac{4x(2x-3) - (4x-7) - (2x-3)(4x-7)}{(2x-3)(4x-7)}=0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{4x(2x-3) - (4x-7) - (2x-3)(4x-7)}{(2x-3)(4x-7)}=0\,\textrm{.}</math>}}
We expand the numerator
We expand the numerator
-
{{Displayed math||<math>\frac{8x^{2}-12x-(4x-7)-(8x^{2}-14x-12x+21)}{(2x-3)(4x-7)} = 0</math>}}
+
{{Abgesetzte Formel||<math>\frac{8x^{2}-12x-(4x-7)-(8x^{2}-14x-12x+21)}{(2x-3)(4x-7)} = 0</math>}}
and simplify
and simplify
-
{{Displayed math||<math>\frac{10x-14}{(2x-3)(4x-7)}=0\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{10x-14}{(2x-3)(4x-7)}=0\,\textrm{.}</math>}}
This equation is satisfied when the numerator is zero (provided the denominator is not also zero) and this happens when
This equation is satisfied when the numerator is zero (provided the denominator is not also zero) and this happens when
-
{{Displayed math||<math>10x-14=0\,,</math>}}
+
{{Abgesetzte Formel||<math>10x-14=0\,,</math>}}
which gives <math>x=7/5\,</math>.
which gives <math>x=7/5\,</math>.
Zeile 27: Zeile 27:
It can easily happen that we calculate incorrectly, so we check that the answer <math>x=7/5</math> satisfies the equation,
It can easily happen that we calculate incorrectly, so we check that the answer <math>x=7/5</math> satisfies the equation,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\text{LHS } &= \frac{4\cdot\frac{7}{5}}{4\cdot\frac{7}{5}-7} - \frac{1}{2\cdot\frac{7}{5}-3}
\text{LHS } &= \frac{4\cdot\frac{7}{5}}{4\cdot\frac{7}{5}-7} - \frac{1}{2\cdot\frac{7}{5}-3}
= \{\,\text{multiply top and bottom by 5}\,\}\\[5pt]
= \{\,\text{multiply top and bottom by 5}\,\}\\[5pt]

Version vom 08:27, 22. Okt. 2008

First, we move all the terms over to the left-hand side,

\displaystyle \frac{4x}{4x-7}-\frac{1}{2x-3}-1=0\,\textrm{.}

Then, we multiply the top and bottom of all three terms by appropriate factors so that they have the same common denominator, in the following way,

\displaystyle \frac{4x}{4x-7}\cdot\frac{2x-3}{2x-3} - \frac{1}{2x-3}\cdot\frac{4x-7}{4x-7} - \frac{(2x-3)(4x-7)}{(2x-3)(4x-7)} = 0

and so that we can rewrite the left-hand side giving

\displaystyle \frac{4x(2x-3) - (4x-7) - (2x-3)(4x-7)}{(2x-3)(4x-7)}=0\,\textrm{.}

We expand the numerator

\displaystyle \frac{8x^{2}-12x-(4x-7)-(8x^{2}-14x-12x+21)}{(2x-3)(4x-7)} = 0

and simplify

\displaystyle \frac{10x-14}{(2x-3)(4x-7)}=0\,\textrm{.}

This equation is satisfied when the numerator is zero (provided the denominator is not also zero) and this happens when

\displaystyle 10x-14=0\,,

which gives \displaystyle x=7/5\,.

It can easily happen that we calculate incorrectly, so we check that the answer \displaystyle x=7/5 satisfies the equation,

\displaystyle \begin{align}

\text{LHS } &= \frac{4\cdot\frac{7}{5}}{4\cdot\frac{7}{5}-7} - \frac{1}{2\cdot\frac{7}{5}-3} = \{\,\text{multiply top and bottom by 5}\,\}\\[5pt] &= \frac{4\cdot\frac{7}{5}}{4\cdot\frac{7}{5}-7}\cdot\frac{5}{5} - \frac{1}{2\cdot \frac{7}{5}-3}\cdot\frac{5}{5} = \frac{4\cdot 7}{4\cdot 7-7\cdot 5}-\frac{5}{2\cdot 7-3\cdot 5}\\[5pt] &= \frac{4}{4-5}-\frac{5}{14-15} = -4-(-5) = 1 = \text{RHS.} \end{align}