Lösung 2.2:3a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We multiply the top and bottom of the terms on the left-hand side by appropriate factors so that they have the same common denominator, in the following way, | We multiply the top and bottom of the terms on the left-hand side by appropriate factors so that they have the same common denominator, in the following way, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{x+3}{x-3}\cdot \frac{x-2}{x-2}-\frac{x+5}{x-2}\cdot \frac{x-3}{x-3}=0\,\textrm{.}</math>}} |
Now, the numerators can be subtracted, | Now, the numerators can be subtracted, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{(x+3)(x-2)-(x+5)(x-3 )}{(x-2)(x-3)}=0\,\textrm{.}</math>}} |
Expand the brackets in the numerator, | Expand the brackets in the numerator, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{x^{2}-2x+3x-6-(x^{2}-3x+5x-15)}{(x-2)(x-3)}=0</math>}} |
and simplify | and simplify | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{-x+9}{(x-2)(x-3)}=0\,\textrm{.}</math>}} |
The left-hand side will be zero only when its numerator is zero (provided the denominator is not also zero), which gives us that the equation's solutions are given by the solutions to | The left-hand side will be zero only when its numerator is zero (provided the denominator is not also zero), which gives us that the equation's solutions are given by the solutions to | ||
- | {{ | + | {{Abgesetzte Formel||<math>-x+9=0\,</math>,}} |
i.e. <math>x=9</math>. | i.e. <math>x=9</math>. | ||
Zeile 23: | Zeile 23: | ||
Substituting <math>x=9</math> into the original equation shows that we have calculated correctly, | Substituting <math>x=9</math> into the original equation shows that we have calculated correctly, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\text{LHS}=\frac{9+3}{9-3}-\frac{9+5}{9-2}=\frac{12}{6}-\frac{14}{7}=2-2=0=\text{RHS.}</math>}} |
Version vom 08:27, 22. Okt. 2008
We multiply the top and bottom of the terms on the left-hand side by appropriate factors so that they have the same common denominator, in the following way,
\displaystyle \frac{x+3}{x-3}\cdot \frac{x-2}{x-2}-\frac{x+5}{x-2}\cdot \frac{x-3}{x-3}=0\,\textrm{.} |
Now, the numerators can be subtracted,
\displaystyle \frac{(x+3)(x-2)-(x+5)(x-3 )}{(x-2)(x-3)}=0\,\textrm{.} |
Expand the brackets in the numerator,
\displaystyle \frac{x^{2}-2x+3x-6-(x^{2}-3x+5x-15)}{(x-2)(x-3)}=0 |
and simplify
\displaystyle \frac{-x+9}{(x-2)(x-3)}=0\,\textrm{.} |
The left-hand side will be zero only when its numerator is zero (provided the denominator is not also zero), which gives us that the equation's solutions are given by the solutions to
\displaystyle -x+9=0\,, |
i.e. \displaystyle x=9.
Substituting \displaystyle x=9 into the original equation shows that we have calculated correctly,
\displaystyle \text{LHS}=\frac{9+3}{9-3}-\frac{9+5}{9-2}=\frac{12}{6}-\frac{14}{7}=2-2=0=\text{RHS.} |