Lösung 2.2:1c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Because there is an ''x'' on both the left- and right-hand sides, the first step is to subtract ''x''/3 from both sides, | Because there is an ''x'' on both the left- and right-hand sides, the first step is to subtract ''x''/3 from both sides, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\tfrac{1}{3}x-1-\tfrac{1}{3}x=x-\tfrac{1}{3}x</math>}} |
so as to collect ''x'' on the right-hand side | so as to collect ''x'' on the right-hand side | ||
- | {{ | + | {{Abgesetzte Formel||<math>-1=\tfrac{2}{3}x\,\textrm{.}</math>}} |
Then, multiply both sides by 3/2, | Then, multiply both sides by 3/2, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\tfrac{3}{2}\cdot (-1) = \tfrac{3}{2}\cdot\tfrac{2}{3}x\,,</math>}} |
so that 2/3 can be eliminated on the right-hand side to give us | so that 2/3 can be eliminated on the right-hand side to give us | ||
- | {{ | + | {{Abgesetzte Formel||<math>-\tfrac{3}{2}=x\,\textrm{.}</math>}} |
Version vom 08:26, 22. Okt. 2008
Because there is an x on both the left- and right-hand sides, the first step is to subtract x/3 from both sides,
\displaystyle \tfrac{1}{3}x-1-\tfrac{1}{3}x=x-\tfrac{1}{3}x |
so as to collect x on the right-hand side
\displaystyle -1=\tfrac{2}{3}x\,\textrm{.} |
Then, multiply both sides by 3/2,
\displaystyle \tfrac{3}{2}\cdot (-1) = \tfrac{3}{2}\cdot\tfrac{2}{3}x\,, |
so that 2/3 can be eliminated on the right-hand side to give us
\displaystyle -\tfrac{3}{2}=x\,\textrm{.} |