Lösung 2.1:2b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket | We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\ | (1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\ | ||
&=1+15x-5x-75x^2\\ | &=1+15x-5x-75x^2\\ | ||
Zeile 9: | Zeile 9: | ||
As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x</math>, | As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\ | 3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\ | ||
&=3(4-25x^2)\\ | &=3(4-25x^2)\\ | ||
Zeile 17: | Zeile 17: | ||
All together, we obtain | All together, we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(1-5x)(1+15x)-3(2-5x)(2+5x) &= (1+10x-75x^2)-(12-75x^2)\\ | (1-5x)(1+15x)-3(2-5x)(2+5x) &= (1+10x-75x^2)-(12-75x^2)\\ | ||
&= 1+10x-75x^2-12+75x^2\\ | &= 1+10x-75x^2-12+75x^2\\ |
Version vom 08:21, 22. Okt. 2008
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
\displaystyle \begin{align}
(1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\ &=1+15x-5x-75x^2\\ &=1+10x-75x^2\,\textrm{.} \end{align} |
As for the second expression, we can use the conjugate rule \displaystyle (a-b)(a+b)=a^2-b^2, where \displaystyle a=2 and \displaystyle b=5x,
\displaystyle \begin{align}
3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\ &=3(4-25x^2)\\ &=12-75x^2\,\textrm{.} \end{align} |
All together, we obtain
\displaystyle \begin{align}
(1-5x)(1+15x)-3(2-5x)(2+5x) &= (1+10x-75x^2)-(12-75x^2)\\ &= 1+10x-75x^2-12+75x^2\\ &= 1-12+10x-75x^2+75x^2\\ &=-11+10x\,\textrm{.} \end{align} |