Lösung 2.1:1e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
If we use the rule for squaring <math>(a-b)^2 = a^2-2ab+b^2 </math> with <math> a=x </math> and <math> b=7</math>, we obtain directly that
If we use the rule for squaring <math>(a-b)^2 = a^2-2ab+b^2 </math> with <math> a=x </math> and <math> b=7</math>, we obtain directly that
-
{{Displayed math||<math> (x-7)^2=x^2-2 \cdot x \cdot 7 + 7^2 = x^2-14x+49\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math> (x-7)^2=x^2-2 \cdot x \cdot 7 + 7^2 = x^2-14x+49\,\textrm{.}</math>}}
An alternative is to write the square as <math> (x-7)\cdot (x-7)</math> and then multiply the brackets in two steps
An alternative is to write the square as <math> (x-7)\cdot (x-7)</math> and then multiply the brackets in two steps
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(x-7)\cdot (x-7) &= (x-7)\cdot x - (x-7)\cdot 7 \\[3pt]
(x-7)\cdot (x-7) &= (x-7)\cdot x - (x-7)\cdot 7 \\[3pt]
&= x\cdot x-7 \cdot x -(x\cdot 7 - 7\cdot 7) \\[3pt]
&= x\cdot x-7 \cdot x -(x\cdot 7 - 7\cdot 7) \\[3pt]

Version vom 08:20, 22. Okt. 2008

If we use the rule for squaring \displaystyle (a-b)^2 = a^2-2ab+b^2 with \displaystyle a=x and \displaystyle b=7, we obtain directly that

\displaystyle (x-7)^2=x^2-2 \cdot x \cdot 7 + 7^2 = x^2-14x+49\,\textrm{.}

An alternative is to write the square as \displaystyle (x-7)\cdot (x-7) and then multiply the brackets in two steps

\displaystyle \begin{align}

(x-7)\cdot (x-7) &= (x-7)\cdot x - (x-7)\cdot 7 \\[3pt] &= x\cdot x-7 \cdot x -(x\cdot 7 - 7\cdot 7) \\[3pt] &= x^2 -7x-(7x-49)\\[3pt] & \stackrel{*}= x^2-7x-7x+49 \\[3pt] &= x^2-(7+7)x+49\\[3pt] &= x^2-14x+49\,\textrm{.} \end{align}

In the line that has been marked with an asterisk, we have removed the bracket and at the same time changed signs on all terms inside the bracket.