Lösung 1.3:6b

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus
When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus
-
{{Displayed math||<math>0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}</math>.}}
+
{{Abgesetzte Formel||<math>0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}</math>.}}
Another way to see this is to rewrite the two powers as
Another way to see this is to rewrite the two powers as
-
{{Displayed math||<math>0\textrm{.}5^{-3}=\frac{1}{0\textrm{.}5^{3}}\quad</math> and <math>\quad 0\textrm{.}4^{-3}=\frac{1}{0\textrm{.}4^3}</math>}}
+
{{Abgesetzte Formel||<math>0\textrm{.}5^{-3}=\frac{1}{0\textrm{.}5^{3}}\quad</math> and <math>\quad 0\textrm{.}4^{-3}=\frac{1}{0\textrm{.}4^3}</math>}}
and because <math>0\textrm{.}5^{3} > 0\textrm{.}4^{3}</math> (see exercise a), it follows that
and because <math>0\textrm{.}5^{3} > 0\textrm{.}4^{3}</math> (see exercise a), it follows that
-
{{Displayed math||<math>\frac{1}{0\textrm{.}4^{3}} > \frac{1}{0\textrm{.}5^{3}}\,</math>,}}
+
{{Abgesetzte Formel||<math>\frac{1}{0\textrm{.}4^{3}} > \frac{1}{0\textrm{.}5^{3}}\,</math>,}}
i.e. <math>0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}\,</math>.
i.e. <math>0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}\,</math>.

Version vom 08:19, 22. Okt. 2008

When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus

\displaystyle 0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}.

Another way to see this is to rewrite the two powers as

\displaystyle 0\textrm{.}5^{-3}=\frac{1}{0\textrm{.}5^{3}}\quad and \displaystyle \quad 0\textrm{.}4^{-3}=\frac{1}{0\textrm{.}4^3}

and because \displaystyle 0\textrm{.}5^{3} > 0\textrm{.}4^{3} (see exercise a), it follows that

\displaystyle \frac{1}{0\textrm{.}4^{3}} > \frac{1}{0\textrm{.}5^{3}}\,,

i.e. \displaystyle 0\textrm{.}4^{-3} > 0\textrm{.}5^{-3}\,.