Lösung 1.3:4e
Aus Online Mathematik Brückenkurs 1
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Because <math>5^{9} = 5^{8+1} = 5^{8}\cdot 5^{1} = 5^{8}\cdot 5</math>, the two terms inside the brackets have <math>5^{8}</math> as a common factor and can therefore be taken outside the bracket | Because <math>5^{9} = 5^{8+1} = 5^{8}\cdot 5^{1} = 5^{8}\cdot 5</math>, the two terms inside the brackets have <math>5^{8}</math> as a common factor and can therefore be taken outside the bracket | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\bigl(5^{8}+5^{9}\bigr)^{-1} &= \bigl(5^{8}+5^{8}\cdot 5\bigr)^{-1} = \bigl(5^{8}\cdot (1+5)\bigr)^{-1}\\[5pt] | \bigl(5^{8}+5^{9}\bigr)^{-1} &= \bigl(5^{8}+5^{8}\cdot 5\bigr)^{-1} = \bigl(5^{8}\cdot (1+5)\bigr)^{-1}\\[5pt] | ||
&= \bigl(5^{8}\cdot 6\bigr)^{-1} = 5^{8\cdot (-1)}\cdot 6^{-1} = 5^{-8}\cdot 6^{-1}. | &= \bigl(5^{8}\cdot 6\bigr)^{-1} = 5^{8\cdot (-1)}\cdot 6^{-1} = 5^{-8}\cdot 6^{-1}. | ||
Zeile 8: | Zeile 8: | ||
Furthermore, <math>625 = 5\cdot 125 = 5\cdot 5\cdot 25 = 5\cdot 5\cdot 5\cdot 5 = 5^{4}</math> and we obtain | Furthermore, <math>625 = 5\cdot 125 = 5\cdot 5\cdot 25 = 5\cdot 5\cdot 5\cdot 5 = 5^{4}</math> and we obtain | ||
- | {{ | + | {{Abgesetzte Formel|| |
<math>\begin{align} | <math>\begin{align} | ||
625\cdot \bigl(5^{8}+5^{9}\bigr)^{-1} &= 5^{4}\cdot 5^{-8}\cdot 6^{-1} = 5^{4-8}\cdot 6^{-1}\\[5pt] | 625\cdot \bigl(5^{8}+5^{9}\bigr)^{-1} &= 5^{4}\cdot 5^{-8}\cdot 6^{-1} = 5^{4-8}\cdot 6^{-1}\\[5pt] |
Version vom 08:18, 22. Okt. 2008
Because \displaystyle 5^{9} = 5^{8+1} = 5^{8}\cdot 5^{1} = 5^{8}\cdot 5, the two terms inside the brackets have \displaystyle 5^{8} as a common factor and can therefore be taken outside the bracket
\displaystyle \begin{align}
\bigl(5^{8}+5^{9}\bigr)^{-1} &= \bigl(5^{8}+5^{8}\cdot 5\bigr)^{-1} = \bigl(5^{8}\cdot (1+5)\bigr)^{-1}\\[5pt] &= \bigl(5^{8}\cdot 6\bigr)^{-1} = 5^{8\cdot (-1)}\cdot 6^{-1} = 5^{-8}\cdot 6^{-1}. \end{align} |
Furthermore, \displaystyle 625 = 5\cdot 125 = 5\cdot 5\cdot 25 = 5\cdot 5\cdot 5\cdot 5 = 5^{4} and we obtain
\displaystyle \begin{align} 625\cdot \bigl(5^{8}+5^{9}\bigr)^{-1} &= 5^{4}\cdot 5^{-8}\cdot 6^{-1} = 5^{4-8}\cdot 6^{-1}\\[5pt] &= 5^{-4}\cdot 6^{-1} = \frac{1}{5^{4}}\cdot \frac{1}{6}\\[5pt] &= \frac{1}{5^{4}\cdot 6} = \frac{1}{5\cdot 5\cdot 5\cdot 5\cdot 6}\\[5pt] &= \frac{1}{3750}\,\textrm{.} \end{align} |