Lösung 1.3:4d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 3: | Zeile 3: | ||
In order to calculate the next part of the expression, <math>(-2)^{-4}</math>, it can be useful to do it a step at a time | In order to calculate the next part of the expression, <math>(-2)^{-4}</math>, it can be useful to do it a step at a time | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(-2)^{-4} &= \frac{1}{(-2)^{4}} = \frac{1}{((-1)\cdot 2)^{4}} = \frac{1}{(-1)^{4}\cdot 2^{4}}\\[5pt] | (-2)^{-4} &= \frac{1}{(-2)^{4}} = \frac{1}{((-1)\cdot 2)^{4}} = \frac{1}{(-1)^{4}\cdot 2^{4}}\\[5pt] | ||
&= \frac{1}{1\cdot 2^{4}} = \frac{1}{2^{4}} = 2^{-4}\,\textrm{.} | &= \frac{1}{1\cdot 2^{4}} = \frac{1}{2^{4}} = 2^{-4}\,\textrm{.} | ||
Zeile 10: | Zeile 10: | ||
Thus, | Thus, | ||
- | {{ | + | {{Abgesetzte Formel||<math>2^{2^{3}}\cdot (-2)^{-4} = 2^{8}\cdot 2^{-4} = 2^{8-4} = 2^{4} = 16\,</math>.}} |
Version vom 08:18, 22. Okt. 2008
The partial expression \displaystyle 2^{2^{3}} should be interpreted as 2 raised to the \displaystyle 2^{3}, and because \displaystyle 2^{3}=2\cdot 2\cdot 2=8, thus \displaystyle 2^{2^{3}}=2^{8}.
In order to calculate the next part of the expression, \displaystyle (-2)^{-4}, it can be useful to do it a step at a time
\displaystyle \begin{align}
(-2)^{-4} &= \frac{1}{(-2)^{4}} = \frac{1}{((-1)\cdot 2)^{4}} = \frac{1}{(-1)^{4}\cdot 2^{4}}\\[5pt] &= \frac{1}{1\cdot 2^{4}} = \frac{1}{2^{4}} = 2^{-4}\,\textrm{.} \end{align} |
Thus,
\displaystyle 2^{2^{3}}\cdot (-2)^{-4} = 2^{8}\cdot 2^{-4} = 2^{8-4} = 2^{4} = 16\,. |