Lösung 1.3:4c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The whole expression consists of factors having a base of 5 so the power rules can be used to simplify the expression first
The whole expression consists of factors having a base of 5 so the power rules can be used to simplify the expression first
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\frac{5^{12}}{5^{-4}}\cdot \bigl( 5^{2} \bigr)^{-6}
\frac{5^{12}}{5^{-4}}\cdot \bigl( 5^{2} \bigr)^{-6}
&= \frac{5^{12}}{5^{-4}}\cdot 5^{2\cdot (-6)}\\[3pt]
&= \frac{5^{12}}{5^{-4}}\cdot 5^{2\cdot (-6)}\\[3pt]

Version vom 08:18, 22. Okt. 2008

The whole expression consists of factors having a base of 5 so the power rules can be used to simplify the expression first

\displaystyle \begin{align}

\frac{5^{12}}{5^{-4}}\cdot \bigl( 5^{2} \bigr)^{-6} &= \frac{5^{12}}{5^{-4}}\cdot 5^{2\cdot (-6)}\\[3pt] &= \frac{5^{12}}{5^{-4}}\cdot 5^{-12}\\[3pt] &= \frac{5^{12}\cdot 5^{-12}}{5^{-4}}\\[3pt] &= \frac{5^{12-12}}{5^{-4}}\\[3pt] &= \frac{5^{0}}{5^{-4}}\\[3pt] &= 5^{0-(-4)}\\[3pt] &= 5^{4}\\[3pt] &= 5\cdot 5\cdot 5\cdot 5\\[3pt] &= 625\,\textrm{.} \end{align}