Lösung 1.3:4b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The numbers 9 and 27 can both be written as powers of 3, | The numbers 9 and 27 can both be written as powers of 3, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
9 &= 3\cdot 3 = 3^{2}\,,\\[5pt] | 9 &= 3\cdot 3 = 3^{2}\,,\\[5pt] | ||
27 &= 3\cdot 9 = 3\cdot 3\cdot 3 = 3^{3}\textrm{.} | 27 &= 3\cdot 9 = 3\cdot 3\cdot 3 = 3^{3}\textrm{.} | ||
Zeile 8: | Zeile 8: | ||
Thus, all factors in the expression can be written using a common base and the whole product can be simplified using the power rules | Thus, all factors in the expression can be written using a common base and the whole product can be simplified using the power rules | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
3^{13}\cdot 9^{-3}\cdot 27^{-2} &= 3^{13}\cdot (3^{2})^{-3}\cdot (3^{3})^{-2}\\[3pt] | 3^{13}\cdot 9^{-3}\cdot 27^{-2} &= 3^{13}\cdot (3^{2})^{-3}\cdot (3^{3})^{-2}\\[3pt] | ||
&= 3^{13}\cdot 3^{2\cdot (-3)}\cdot 3^{3\cdot (-2)}\\[3pt] | &= 3^{13}\cdot 3^{2\cdot (-3)}\cdot 3^{3\cdot (-2)}\\[3pt] |
Version vom 08:17, 22. Okt. 2008
The numbers 9 and 27 can both be written as powers of 3,
\displaystyle \begin{align}
9 &= 3\cdot 3 = 3^{2}\,,\\[5pt] 27 &= 3\cdot 9 = 3\cdot 3\cdot 3 = 3^{3}\textrm{.} \end{align} |
Thus, all factors in the expression can be written using a common base and the whole product can be simplified using the power rules
\displaystyle \begin{align}
3^{13}\cdot 9^{-3}\cdot 27^{-2} &= 3^{13}\cdot (3^{2})^{-3}\cdot (3^{3})^{-2}\\[3pt] &= 3^{13}\cdot 3^{2\cdot (-3)}\cdot 3^{3\cdot (-2)}\\[3pt] &= 3^{13}\cdot 3^{-6}\cdot 3^{-6}\\[3pt] &= 3^{13-6-6}\\[3pt] &= 3^{1}\\[3pt] &= 3\,\textrm{.} \end{align} |