Lösung 1.2:1e

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The first step is to expand the fractions so that they have a common denominator,
The first step is to expand the fractions so that they have a common denominator,
-
{{Displayed math||<math>\frac{8\cdot 4\cdot 3}{7\cdot 4\cdot 3}+\frac{3\cdot 7\cdot 3}{4\cdot 7\cdot 3}-\frac{4\cdot 7\cdot 4}{3\cdot 7\cdot 4}=\frac{96}{84}+\frac{63}{84}-\frac{112}{84}\,</math>.}}
+
{{Abgesetzte Formel||<math>\frac{8\cdot 4\cdot 3}{7\cdot 4\cdot 3}+\frac{3\cdot 7\cdot 3}{4\cdot 7\cdot 3}-\frac{4\cdot 7\cdot 4}{3\cdot 7\cdot 4}=\frac{96}{84}+\frac{63}{84}-\frac{112}{84}\,</math>.}}
After that, the expression can be calculated by adding and subtracting the numerators
After that, the expression can be calculated by adding and subtracting the numerators
-
{{Displayed math||<math>\frac{96}{84}+\frac{63}{84}-\frac{112}{84}=\frac{96+63-112}{84}=\frac{47}{84}\,</math>.}}
+
{{Abgesetzte Formel||<math>\frac{96}{84}+\frac{63}{84}-\frac{112}{84}=\frac{96+63-112}{84}=\frac{47}{84}\,</math>.}}

Version vom 08:13, 22. Okt. 2008

The first step is to expand the fractions so that they have a common denominator,

\displaystyle \frac{8\cdot 4\cdot 3}{7\cdot 4\cdot 3}+\frac{3\cdot 7\cdot 3}{4\cdot 7\cdot 3}-\frac{4\cdot 7\cdot 4}{3\cdot 7\cdot 4}=\frac{96}{84}+\frac{63}{84}-\frac{112}{84}\,.

After that, the expression can be calculated by adding and subtracting the numerators

\displaystyle \frac{96}{84}+\frac{63}{84}-\frac{112}{84}=\frac{96+63-112}{84}=\frac{47}{84}\,.