4.3 Trigonometrische Eigenschaften

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (hat „4.3 Trigonometric relations“ nach „4.3 Trigonometrische Eigenschaften“ verschoben: Page title translated)
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 33: Zeile 33:
This identity is the most basic, but is in fact nothing more than Pythagorean theorem, applied to the unit circle. The right-angled triangle on the right shows that
This identity is the most basic, but is in fact nothing more than Pythagorean theorem, applied to the unit circle. The right-angled triangle on the right shows that
-
{{Displayed math||<math>(\sin v)^2 + (\cos v)^2 = 1\,\mbox{,}</math>}}
+
{{Abgesetzte Formel||<math>(\sin v)^2 + (\cos v)^2 = 1\,\mbox{,}</math>}}
which is usually written as <math>\sin^2\!v + \cos^2\!v = 1</math>.
which is usually written as <math>\sin^2\!v + \cos^2\!v = 1</math>.
Zeile 46: Zeile 46:
<div class="regel">
<div class="regel">
-
{{Displayed math||<math>
+
{{Abgesetzte Formel||<math>
\begin{align*}
\begin{align*}
\cos (-v) &= \cos v\vphantom{\Bigl(}\\
\cos (-v) &= \cos v\vphantom{\Bigl(}\\
Zeile 77: Zeile 77:
Reflection does not affect the ''x''- coordinate while the ''y''-coordinate changes sign
Reflection does not affect the ''x''- coordinate while the ''y''-coordinate changes sign
-
{{Displayed math||<math>\begin{align*}
+
{{Abgesetzte Formel||<math>\begin{align*}
\cos(-v) &= \cos v\,\mbox{,}\\
\cos(-v) &= \cos v\,\mbox{,}\\
\sin (-v) &= - \sin v\,\mbox{.}\\
\sin (-v) &= - \sin v\,\mbox{.}\\
Zeile 97: Zeile 97:
Reflection does not affect the ''y''-coordinate while the ''x''-coordinate changes sign
Reflection does not affect the ''y''-coordinate while the ''x''-coordinate changes sign
-
{{Displayed math||<math>\begin{align*}
+
{{Abgesetzte Formel||<math>\begin{align*}
\cos(\pi-v) &= -\cos v\,\mbox{,}\\
\cos(\pi-v) &= -\cos v\,\mbox{,}\\
\sin (\pi-v) &= \sin v\,\mbox{.}\\
\sin (\pi-v) &= \sin v\,\mbox{.}\\
Zeile 117: Zeile 117:
Reflection causes the ''x''- and ''y''-coordinates to change places
Reflection causes the ''x''- and ''y''-coordinates to change places
-
{{Displayed math||<math>\begin{align*}
+
{{Abgesetzte Formel||<math>\begin{align*}
\cos \Bigl(\frac{\pi}{2} - v \Bigr) &= \sin v\,\mbox{.}\\
\cos \Bigl(\frac{\pi}{2} - v \Bigr) &= \sin v\,\mbox{.}\\
\sin \Bigl(\frac{\pi}{2} - v \Bigr) &= \cos v\,\mbox{.}\\
\sin \Bigl(\frac{\pi}{2} - v \Bigr) &= \cos v\,\mbox{.}\\
Zeile 137: Zeile 137:
The rotation turns the ''x''-coordinate into the new ''y''-coordinate and the ''y''-coordinates turns into the new ''x''-coordinate though with the opposite sign
The rotation turns the ''x''-coordinate into the new ''y''-coordinate and the ''y''-coordinates turns into the new ''x''-coordinate though with the opposite sign
-
{{Displayed math||<math>\begin{align*}
+
{{Abgesetzte Formel||<math>\begin{align*}
\cos \Bigl(v+\frac{\pi}{2}\Bigr) &= -\sin v\,\mbox{,}\\
\cos \Bigl(v+\frac{\pi}{2}\Bigr) &= -\sin v\,\mbox{,}\\
\sin \Bigl(v+\frac{\pi}{2} \Bigr) &= \cos v\,\mbox{.}
\sin \Bigl(v+\frac{\pi}{2} \Bigr) &= \cos v\,\mbox{.}
Zeile 159: Zeile 159:
<div class="regel">
<div class="regel">
-
{{Displayed math||<math>\begin{align*}
+
{{Abgesetzte Formel||<math>\begin{align*}
\sin(u + v) &= \sin u\,\cos v + \cos u\,\sin v\,\mbox{,}\\
\sin(u + v) &= \sin u\,\cos v + \cos u\,\sin v\,\mbox{,}\\
\sin(u – v) &= \sin u\,\cos v – \cos u\,\sin v\,\mbox{,}\\
\sin(u – v) &= \sin u\,\cos v – \cos u\,\sin v\,\mbox{,}\\
Zeile 170: Zeile 170:
<div class="regel">
<div class="regel">
-
{{Displayed math||<math>\begin{align*}
+
{{Abgesetzte Formel||<math>\begin{align*}
\sin 2v &= 2 \sin v \cos v\,\mbox{,}\\
\sin 2v &= 2 \sin v \cos v\,\mbox{,}\\
\cos 2v &= \cos^2\!v – \sin^2\!v \,\mbox{.}\\
\cos 2v &= \cos^2\!v – \sin^2\!v \,\mbox{.}\\
Zeile 177: Zeile 177:
From these relationships, one can then get the formulas for half angles. By replacing <math>2v</math> by <math>v</math>, and consequently <math>v</math> by <math>v/2</math>, in the formula for <math>\cos 2v</math> one gets that
From these relationships, one can then get the formulas for half angles. By replacing <math>2v</math> by <math>v</math>, and consequently <math>v</math> by <math>v/2</math>, in the formula for <math>\cos 2v</math> one gets that
-
{{Displayed math||<math>
+
{{Abgesetzte Formel||<math>
\cos v = \cos^2\!\frac{v}{2} – \sin^2\!\frac{v}{2}\,\mbox{.}</math>}}
\cos v = \cos^2\!\frac{v}{2} – \sin^2\!\frac{v}{2}\,\mbox{.}</math>}}
If we want a formula for <math>\sin(v/2)</math> we use the Pythagorean identity to get rid of <math>\cos^2(v/2)</math>
If we want a formula for <math>\sin(v/2)</math> we use the Pythagorean identity to get rid of <math>\cos^2(v/2)</math>
-
{{Displayed math||<math>
+
{{Abgesetzte Formel||<math>
\cos v = 1 – \sin^2\!\frac{v}{2} – \sin^2\!\frac{v}{2}
\cos v = 1 – \sin^2\!\frac{v}{2} – \sin^2\!\frac{v}{2}
= 1 – 2\sin^2\!\frac{v}{2}</math>}}
= 1 – 2\sin^2\!\frac{v}{2}</math>}}
i.e.
i.e.
<div class="regel">
<div class="regel">
-
{{Displayed math||<math>
+
{{Abgesetzte Formel||<math>
\sin^2\!\frac{v}{2} = \frac{1 – \cos v}{2}\,\mbox{.}</math>}}
\sin^2\!\frac{v}{2} = \frac{1 – \cos v}{2}\,\mbox{.}</math>}}
</div>
</div>
Zeile 193: Zeile 193:
<div class="regel">
<div class="regel">
-
{{Displayed math||<math>
+
{{Abgesetzte Formel||<math>
\cos^2\!\frac{v}{2} = \frac{1 + \cos v}{2}\,\mbox{.}</math>}}
\cos^2\!\frac{v}{2} = \frac{1 + \cos v}{2}\,\mbox{.}</math>}}
</div>
</div>

Version vom 08:12, 22. Okt. 2008

 

Vorlage:Selected tab Vorlage:Not selected tab

 

Contents:

  • The Pythagorean identity
  • The double-angle and half-angle formulas
  • Addition and subtraction formulas

Learning outcome:

After this section, you will have learned how to:

  • Derive trigonometric relationships from symmetries in the unit circle.
  • Simplify trigonometric expressions with the help of trigonometric formulas.

Introduction

There is a variety of trigonometric formulas to use if one wishes to transform between the sine, cosine or tangent for an angle or multiples of an angle. They are usually known as the trigonometric identities, since they only lead to different ways to describe a single expression using a variety of trigonometric functions. Here we will give some of these trigonometric relationships. There are many more than we can deal with in this course. Most can be derived from the so-called Pythagorean identity and the addition and subtraction formulas or identities (see below), which are important to know by heart.


The Pythagorean identity

This identity is the most basic, but is in fact nothing more than Pythagorean theorem, applied to the unit circle. The right-angled triangle on the right shows that

\displaystyle (\sin v)^2 + (\cos v)^2 = 1\,\mbox{,}

which is usually written as \displaystyle \sin^2\!v + \cos^2\!v = 1.

[Image]


Symmetries

With the help of the unit circle and reflection, and exploiting the symmetries of the trigonometric functions one obtains a large amount of relationships between the cosine and sine functions.

\displaystyle
 \begin{align*}
   \cos (-v) &= \cos v\vphantom{\Bigl(}\\
   \sin (-v) &= - \sin v\vphantom{\Bigl(}\\
   \cos (\pi-v) &= - \cos v\vphantom{\Bigl(}\\
   \sin (\pi-v) &= \sin v\vphantom{\Bigl(}\\
 \end{align*}
 \qquad\quad
 \begin{align*}
   \cos \Bigl(\displaystyle \frac{\pi}{2} -v \Bigr) &= \sin v\\
   \sin \Bigl(\displaystyle \frac{\pi}{2} -v \Bigr) &= \cos v\\
   \cos \Bigl(v + \displaystyle \frac{\pi}{2} \Bigr) &= - \sin v\\
   \sin \Bigl( v + \displaystyle \frac{\pi}{2} \Bigr) &= \cos v\\
 \end{align*}

Instead of trying to learn all of these relationships by heart, it might be better to learn how to derive them from the unit circle.


Reflection in the x-axis

[Image]


When an angle \displaystyle v is reflected in the x-axis it becomes\displaystyle -v.


Reflection does not affect the x- coordinate while the y-coordinate changes sign

\displaystyle \begin{align*}
   \cos(-v) &= \cos v\,\mbox{,}\\
   \sin (-v) &= - \sin v\,\mbox{.}\\
 \end{align*}


Reflection in the y-axis

[Image]


Reflection in the y-axis changes the angle \displaystyle v to \displaystyle \pi-v (the reflection makes an angle \displaystyle v with the negative x-axis).


Reflection does not affect the y-coordinate while the x-coordinate changes sign

\displaystyle \begin{align*}
   \cos(\pi-v) &= -\cos v\,\mbox{,}\\
   \sin (\pi-v) &= \sin v\,\mbox{.}\\
 \end{align*}


Reflection in the line y = x

[Image]


The angle \displaystyle v changes to \displaystyle \pi/2 - v ( the reflection makes an angle \displaystyle v with the positive y-axis).


Reflection causes the x- and y-coordinates to change places

\displaystyle \begin{align*}
   \cos \Bigl(\frac{\pi}{2} - v \Bigr) &= \sin v\,\mbox{.}\\
   \sin \Bigl(\frac{\pi}{2} - v \Bigr) &= \cos v\,\mbox{.}\\
 \end{align*}


Rotation by an angle of \displaystyle \mathbf{\pi/2}

[Image]


A rotation \displaystyle \pi/2 of the angle \displaystyle v means that the angle becomes \displaystyle v+\pi/2.


The rotation turns the x-coordinate into the new y-coordinate and the y-coordinates turns into the new x-coordinate though with the opposite sign

\displaystyle \begin{align*}
   \cos \Bigl(v+\frac{\pi}{2}\Bigr) &= -\sin v\,\mbox{,}\\
   \sin \Bigl(v+\frac{\pi}{2} \Bigr) &= \cos v\,\mbox{.}
 \end{align*}


Alternatively, one can get these relationships by reflecting and / or displacing graphs. For instance, if we want to have a formula in which \displaystyle \cos v is expressed in terms of a sine one can displace the graph for cosine to fit the sine curve. This can be done in several ways, but the most natural is to write \displaystyle \cos v = \sin (v + \pi / 2). To avoid mistakes, one can check that this is true for several different values of \displaystyle v.

[Image]


Check: \displaystyle \ \cos 0 = \sin (0 + \pi / 2)=1.


The addition and subtraction formulas and double-angle and half-angle formulas

One often needs to deal with expressions in which two or more angles are involved, such as \displaystyle \sin(u+v). One will then need the so-called "addition formulas" . For sine and cosine the formulas are

\displaystyle \begin{align*}
   \sin(u + v) &= \sin u\,\cos v + \cos u\,\sin v\,\mbox{,}\\
   \sin(u – v) &= \sin u\,\cos v – \cos u\,\sin v\,\mbox{,}\\
   \cos(u + v) &= \cos u\,\cos v – \sin u\,\sin v\,\mbox{,}\\
   \cos(u – v) &= \cos u\,\cos v + \sin u\,\sin v\,\mbox{.}\\
 \end{align*}

If one wants to know the sine or cosine of a double angle, that is \displaystyle \sin 2v or \displaystyle \cos 2v, one can write these expressions as \displaystyle \sin(v + v) or \displaystyle \cos(v + v) and use the addition formulas above and get the double-angle formulas

\displaystyle \begin{align*}
   \sin 2v &= 2 \sin v \cos v\,\mbox{,}\\
   \cos 2v &= \cos^2\!v – \sin^2\!v \,\mbox{.}\\
 \end{align*}

From these relationships, one can then get the formulas for half angles. By replacing \displaystyle 2v by \displaystyle v, and consequently \displaystyle v by \displaystyle v/2, in the formula for \displaystyle \cos 2v one gets that

\displaystyle
 \cos v = \cos^2\!\frac{v}{2} – \sin^2\!\frac{v}{2}\,\mbox{.}

If we want a formula for \displaystyle \sin(v/2) we use the Pythagorean identity to get rid of \displaystyle \cos^2(v/2)

\displaystyle
 \cos v = 1 – \sin^2\!\frac{v}{2} – \sin^2\!\frac{v}{2}
        = 1 – 2\sin^2\!\frac{v}{2}

i.e.

\displaystyle
 \sin^2\!\frac{v}{2} = \frac{1 – \cos v}{2}\,\mbox{.}

Similarly, we can use the Pythagorean identity to get rid of \displaystyle \sin^2(v/2). Then we will have instead

\displaystyle
 \cos^2\!\frac{v}{2} = \frac{1 + \cos v}{2}\,\mbox{.}


Exercises

Study advice

The basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that:

The unit circle is an invaluable tool for finding trigonometric relationships. They are a multitude and there is no point in trying to learn all of them by heart. It is also time-consuming to have to look them up all the time. Therefore, it is much better that you learn how to use the unit circle.

The most famous trigonometric formula is the so-called Pythagorean identity. It applies to all angles, not just for acute angles. It is based on the Pythagoras theorem.


Useful web sites

Experiment with the cosine “box”