2.3 Quadratische Gleichungen
Aus Online Mathematik Brückenkurs 1
K (Robot: Automated text replacement (-[[2.3 Quadratic expressions +[[2.3 Quadratische Gleichungen)) |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 30: | Zeile 30: | ||
A quadratic equation is one that can be written as | A quadratic equation is one that can be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2+px+q=0</math>}} |
where <math>x</math> is the unknown and <math>p</math> and <math>q</math> are constants. | where <math>x</math> is the unknown and <math>p</math> and <math>q</math> are constants. | ||
Zeile 60: | Zeile 60: | ||
<li> Solve the equation <math>\ 2(x+1)^2 -8=0</math>. <br><br> | <li> Solve the equation <math>\ 2(x+1)^2 -8=0</math>. <br><br> | ||
Move the term <math>8</math> over to the right-hand side and divide both sides by <math>2</math>, | Move the term <math>8</math> over to the right-hand side and divide both sides by <math>2</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>(x+1)^2=4 \; \mbox{.}</math>}} |
Taking the roots gives: | Taking the roots gives: | ||
*<math>x+1 =\sqrt{4} = 2, \quad \mbox{dvs.} \quad x=-1+2=1\,\mbox{,}</math> | *<math>x+1 =\sqrt{4} = 2, \quad \mbox{dvs.} \quad x=-1+2=1\,\mbox{,}</math> | ||
Zeile 70: | Zeile 70: | ||
If we consider the rule for expanding a quadratic, | If we consider the rule for expanding a quadratic, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2 + 2ax + a^2 = (x+a)^2</math>}} |
and subtract the <math>a^2</math> from both sides we get | and subtract the <math>a^2</math> from both sides we get | ||
<div class="regel"> | <div class="regel"> | ||
'''Completing the square:''' | '''Completing the square:''' | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2 +2ax = (x+a)^2 -a^2</math>}} |
</div> | </div> | ||
Zeile 84: | Zeile 84: | ||
<li> Solve the equation <math>\ x^2 +2x -8=0</math>. <br><br> | <li> Solve the equation <math>\ x^2 +2x -8=0</math>. <br><br> | ||
One completes the square for <math>x^2+2x</math> (use <math>a=1</math> in the formula) | One completes the square for <math>x^2+2x</math> (use <math>a=1</math> in the formula) | ||
- | {{ | + | {{Abgesetzte Formel||<math>\underline{\vphantom{(}x^2+2x} -8 = \underline{(x+1)^2-1^2} -8 = (x+1)^2-9,</math>}} |
where the underlined terms are those involved in the completion of the square. Thus the equation can be written as | where the underlined terms are those involved in the completion of the square. Thus the equation can be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>(x+1)^2 -9 = 0,</math>}} |
which we solve by taking roots | which we solve by taking roots | ||
*<math>x+1 =\sqrt{9} = 3\,</math> and hence <math>x=-1+3=2</math>, | *<math>x+1 =\sqrt{9} = 3\,</math> and hence <math>x=-1+3=2</math>, | ||
Zeile 93: | Zeile 93: | ||
<li> Solve the equation <math>\ 2x^2 -2x - \frac{3}{2} = 0</math>. <br><br> | <li> Solve the equation <math>\ 2x^2 -2x - \frac{3}{2} = 0</math>. <br><br> | ||
Divide both sides by 2 | Divide both sides by 2 | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2-x-\textstyle\frac{3}{4}=0\mbox{.}</math>}} |
Complete the square of the left-hand side (use <math>a=-\tfrac{1}{2}</math>) | Complete the square of the left-hand side (use <math>a=-\tfrac{1}{2}</math>) | ||
- | {{ | + | {{Abgesetzte Formel||<math>\textstyle\underline{\vphantom{\bigl(\frac{3}{4}}x^2-x} -\frac{3}{4} = \underline{\bigl(x-\frac{1}{2}\bigr)^2 - \bigl(-\frac{1}{2}\bigr)^2} -\frac{3}{4}= \bigl(x-\frac{1}{2}\bigr)^2 -1</math>}} |
and this gives us the equation | and this gives us the equation | ||
- | {{ | + | {{Abgesetzte Formel||<math>\textstyle\bigl(x-\frac{1}{2}\bigr)^2 - 1=0\mbox{.}</math>}} |
Taking roots gives | Taking roots gives | ||
*<math>x-\tfrac{1}{2} =\sqrt{1} = 1, \quad</math> i.e. <math>\quad x=\tfrac{1}{2}+1=\tfrac{3}{2}</math>, | *<math>x-\tfrac{1}{2} =\sqrt{1} = 1, \quad</math> i.e. <math>\quad x=\tfrac{1}{2}+1=\tfrac{3}{2}</math>, | ||
Zeile 117: | Zeile 117: | ||
Using the completing the square method it is possible to show that the general quadratic equation | Using the completing the square method it is possible to show that the general quadratic equation | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2+px+q=0</math>}} |
has the solutions | has the solutions | ||
- | {{ | + | {{Abgesetzte Formel||<math>x = - \displaystyle\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q}</math>}} |
provided that the term inside the root sign is not negative. | provided that the term inside the root sign is not negative. | ||
Zeile 141: | Zeile 141: | ||
Functions | Functions | ||
- | {{ | + | {{Abgesetzte Formel||<math>\eqalign{y&=x^2-2x+5\cr y&=4-3x^2\cr y&=\textstyle\frac{1}{5}x^2 +3x}</math>}} |
are examples of functions of the second degree. In general, a function of the second degree can be written as | are examples of functions of the second degree. In general, a function of the second degree can be written as | ||
- | {{ | + | {{Abgesetzte Formel||<math>y=ax^2+bx+c</math>}} |
where <math>a</math>, <math>b</math> and <math>c</math> are constants, and where <math>a\ne0</math>. | where <math>a</math>, <math>b</math> and <math>c</math> are constants, and where <math>a\ne0</math>. | ||
Zeile 194: | Zeile 194: | ||
If one completes the square for the right-hand side | If one completes the square for the right-hand side | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2 +2x+2 = (x+1)^2 -1^2 +2 = (x+1)^2+1</math>}} |
we see from the resulting expression <math>y= (x+1)^2+1</math> that the parabola has been displaced one unit to the left along the <math>x</math>-direction, compared to <math>y=x^2</math> (as it stands <math>(x+1)^2</math> instead of <math>x^2</math>) and one unit upwards along the <math>y</math>-direction | we see from the resulting expression <math>y= (x+1)^2+1</math> that the parabola has been displaced one unit to the left along the <math>x</math>-direction, compared to <math>y=x^2</math> (as it stands <math>(x+1)^2</math> instead of <math>x^2</math>) and one unit upwards along the <math>y</math>-direction | ||
||{{:2.3 - Bild - Die Parabel y = x² + 2x + 2}} | ||{{:2.3 - Bild - Die Parabel y = x² + 2x + 2}} | ||
Zeile 207: | Zeile 207: | ||
A point is on the <math>x</math>-axis if its <math>y</math>-coordinate is zero, and the points on the parabola which have <math>y=0</math> have an <math>x</math>-coordinate that satisfies the equation | A point is on the <math>x</math>-axis if its <math>y</math>-coordinate is zero, and the points on the parabola which have <math>y=0</math> have an <math>x</math>-coordinate that satisfies the equation | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2-4x+3=0\mbox{.}</math>}} |
Complete the square for the left-hand side, | Complete the square for the left-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2-4x+3=(x-2)^2-2^2+3=(x-2)^2-1</math>}} |
and this gives the equation | and this gives the equation | ||
- | {{ | + | {{Abgesetzte Formel||<math>(x-2)^2= 1 \; \mbox{.}</math>}} |
After taking roots we get solutions | After taking roots we get solutions | ||
*<math>x-2 =\sqrt{1} = 1,\quad</math> i.e. <math>\quad x=2+1=3</math>, | *<math>x-2 =\sqrt{1} = 1,\quad</math> i.e. <math>\quad x=2+1=3</math>, | ||
Zeile 229: | Zeile 229: | ||
We complete the square | We complete the square | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^2 +8x+19=(x+4)^2 -4^2 +19 = (x+4)^2 +3</math>}} |
and then we see that the expression must be at least equal to 3 because the square <math>(x+4)^2</math> is always greater than or equal to 0 regardless of what <math>x</math> is. | and then we see that the expression must be at least equal to 3 because the square <math>(x+4)^2</math> is always greater than or equal to 0 regardless of what <math>x</math> is. | ||
Version vom 08:11, 22. Okt. 2008
Contents:
- Completing the square method
- Quadratic equations
- Factorising
- Parabolas
Learning outcomes:
After this section, you will have learned to:
- Complete the square for expressions of degree two (second degree).
- Solve quadratic equations by completing the square (not using a standard formula) and know how to check the answer.
- Factorise expressions of the second degree. (when possible).
- Directly solve factorised or almost factorised quadratic equations.
- Determine the minimum / maximum value of an expression of degree two.
- Sketch parabolas by completing the square method.
Quadratic equations
A quadratic equation is one that can be written as
\displaystyle x^2+px+q=0 |
where \displaystyle x is the unknown and \displaystyle p and \displaystyle q are constants.
Simpler forms of quadratic equations can be solved directly by taking roots.
The equation \displaystyle x^2=a where \displaystyle a is a positive number has two solutions (roots) \displaystyle x=\sqrt{a} and \displaystyle x=-\sqrt{a}.
Example 1
- \displaystyle x^2 = 4 \quad has the roots \displaystyle x=\sqrt{4} = 2 and \displaystyle x=-\sqrt{4}= -2.
- \displaystyle 2x^2=18 \quad is rewritten as \displaystyle x^2=9 , and has the roots \displaystyle x=\sqrt9 = 3 and \displaystyle x=-\sqrt9 = -3.
- \displaystyle 3x^2-15=0 \quad can be rewritten as \displaystyle x^2=5 and has the roots \displaystyle x=\sqrt5 \approx 2{,}236 and \displaystyle x=-\sqrt5 \approx -2{,}236.
- \displaystyle 9x^2+25=0\quad has no solutions because the left-hand side will always be greater than or equal to 25 regardless of the value of \displaystyle x (the square \displaystyle x^2 is always greater than or equal to zero).
Example 2
- Solve the equation \displaystyle \ (x-1)^2 = 16.
By considering \displaystyle x-1 as the unknown and taking the roots one finds the equation has two solutions- \displaystyle x-1 =\sqrt{16} = 4\, which gives that \displaystyle x=1+4=5,
- \displaystyle x-1 = -\sqrt{16} = -4\, which gives that \displaystyle x=1-4=-3.
- Solve the equation \displaystyle \ 2(x+1)^2 -8=0.
Move the term \displaystyle 8 over to the right-hand side and divide both sides by \displaystyle 2,\displaystyle (x+1)^2=4 \; \mbox{.} Taking the roots gives:
- \displaystyle x+1 =\sqrt{4} = 2, \quad \mbox{dvs.} \quad x=-1+2=1\,\mbox{,}
- \displaystyle x+1 = -\sqrt{4} = -2, \quad \mbox{dvs.} \quad x=-1-2=-3\,\mbox{.}
To solve a quadratic equation generally, we use a technique called completing the square.
If we consider the rule for expanding a quadratic,
\displaystyle x^2 + 2ax + a^2 = (x+a)^2 |
and subtract the \displaystyle a^2 from both sides we get
Completing the square:
\displaystyle x^2 +2ax = (x+a)^2 -a^2 |
Example 3
- Solve the equation \displaystyle \ x^2 +2x -8=0.
One completes the square for \displaystyle x^2+2x (use \displaystyle a=1 in the formula)\displaystyle \underline{\vphantom{(}x^2+2x} -8 = \underline{(x+1)^2-1^2} -8 = (x+1)^2-9, where the underlined terms are those involved in the completion of the square. Thus the equation can be written as
\displaystyle (x+1)^2 -9 = 0, which we solve by taking roots
- \displaystyle x+1 =\sqrt{9} = 3\, and hence \displaystyle x=-1+3=2,
- \displaystyle x+1 =-\sqrt{9} = -3\, and hence \displaystyle x=-1-3=-4.
- Solve the equation \displaystyle \ 2x^2 -2x - \frac{3}{2} = 0.
Divide both sides by 2\displaystyle x^2-x-\textstyle\frac{3}{4}=0\mbox{.} Complete the square of the left-hand side (use \displaystyle a=-\tfrac{1}{2})
\displaystyle \textstyle\underline{\vphantom{\bigl(\frac{3}{4}}x^2-x} -\frac{3}{4} = \underline{\bigl(x-\frac{1}{2}\bigr)^2 - \bigl(-\frac{1}{2}\bigr)^2} -\frac{3}{4}= \bigl(x-\frac{1}{2}\bigr)^2 -1 and this gives us the equation
\displaystyle \textstyle\bigl(x-\frac{1}{2}\bigr)^2 - 1=0\mbox{.} Taking roots gives
- \displaystyle x-\tfrac{1}{2} =\sqrt{1} = 1, \quad i.e. \displaystyle \quad x=\tfrac{1}{2}+1=\tfrac{3}{2},
- \displaystyle x-\tfrac{1}{2}= -\sqrt{1} = -1, \quad i.e. \displaystyle \quad x=\tfrac{1}{2}-1= -\tfrac{1}{2}.
Hint:
Keep in mind that we can always test our solution to an equation by inserting the value in the equation and see if the equation is satisfied. We should always do this to check for any careless mistakes. For example, in 3a above, we have two cases to consider. We call the left- and right-hand sides LHS and RHS respectively:
- \displaystyle x = 2 gives that \displaystyle \mbox{LHS } = 2^2 +2\cdot 2 - 8 = 4+4-8 = 0 = \mbox{RHS}.
- \displaystyle x = -4 gives that \displaystyle \mbox{LHS } = (-4)^2 + 2\cdot(-4) -8 = 16-8-8 = 0 = \mbox{RHS}.
In both cases we arrive at LHS = RHS. The equation is satisfied in both cases.
Using the completing the square method it is possible to show that the general quadratic equation
\displaystyle x^2+px+q=0 |
has the solutions
\displaystyle x = - \displaystyle\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2-q} |
provided that the term inside the root sign is not negative.
Sometimes one can factorise the equations directly and thus immediately see what the solutions are.
Example 4
- Solve the equation \displaystyle \ x^2-4x=0.
On the left-hand side, we can factor out an \displaystyle x- \displaystyle x(x-4)=0.
- \displaystyle x =0,\quad or
- \displaystyle x-4=0\quad which gives \displaystyle \quad x=4.
Parabolas
Functions
\displaystyle \eqalign{y&=x^2-2x+5\cr y&=4-3x^2\cr y&=\textstyle\frac{1}{5}x^2 +3x} |
are examples of functions of the second degree. In general, a function of the second degree can be written as
\displaystyle y=ax^2+bx+c |
where \displaystyle a, \displaystyle b and \displaystyle c are constants, and where \displaystyle a\ne0.
The graph for a function of the second degree is known as a parabola and the figures show the graphs of two typical parabolas \displaystyle y=x^2 and \displaystyle y=-x^2.
As the expression \displaystyle x^2 is minimal when \displaystyle x=0 the parabola \displaystyle y=x^2 has a minimum when \displaystyle x=0 and the parabola \displaystyle y=-x^2 has a maximum when \displaystyle x=0.
Note also that parabolas above are symmetrical about the \displaystyle y-axis, as the value of \displaystyle x^2 does not depend on the sign of \displaystyle x.
Example 5
|
|
|
|
|
|
All sorts of parabolas can be handled by the completing the square method.
Example 6
Sketch the parabola \displaystyle \ y=x^2+2x+2.
we see from the resulting expression \displaystyle y= (x+1)^2+1 that the parabola has been displaced one unit to the left along the \displaystyle x-direction, compared to \displaystyle y=x^2 (as it stands \displaystyle (x+1)^2 instead of \displaystyle x^2) and one unit upwards along the \displaystyle y-direction |
|
Example 7
Determine where the parabola \displaystyle \,y=x^2-4x+3\, cuts the \displaystyle x-axis.
A point is on the \displaystyle x-axis if its \displaystyle y-coordinate is zero, and the points on the parabola which have \displaystyle y=0 have an \displaystyle x-coordinate that satisfies the equation
\displaystyle x^2-4x+3=0\mbox{.} |
Complete the square for the left-hand side,
\displaystyle x^2-4x+3=(x-2)^2-2^2+3=(x-2)^2-1 |
and this gives the equation
\displaystyle (x-2)^2= 1 \; \mbox{.} |
After taking roots we get solutions
- \displaystyle x-2 =\sqrt{1} = 1,\quad i.e. \displaystyle \quad x=2+1=3,
- \displaystyle x-2 = -\sqrt{1} = -1,\quad i.e. \displaystyle \quad x=2-1=1.
The parabola cuts the \displaystyle x-axis in points \displaystyle (1,0) and \displaystyle (3,0).
Example 8
Determine the minimum value of the expression \displaystyle \,x^2+8x+19\,.
We complete the square
\displaystyle x^2 +8x+19=(x+4)^2 -4^2 +19 = (x+4)^2 +3 |
and then we see that the expression must be at least equal to 3 because the square \displaystyle (x+4)^2 is always greater than or equal to 0 regardless of what \displaystyle x is.
In the figure below, we see that the whole parabola \displaystyle y=x^2+8x+19 lies above the \displaystyle x-axis and has a minimum 3 at \displaystyle x=-4.
Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that:
Devote much time to doing algebra! Algebra is the alphabet of mathematics. Once you understand algebra, your will enhance your understanding of statistics, areas, volumes and geometry.
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about quadratic equations in the English Wikipedia
Learn more about quadratic equations in mathworld
101 uses of a quadratic equation - by Chris Budd and Chris Sangwin
Useful web sites