2.2 Übungen

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 44: Zeile 44:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|| <math>\displaystyle\frac{x+3}{x-3}-\displaystyle\frac{x+5}{x-2}=0</math>
+
|width="100%" | <math>\displaystyle\frac{x+3}{x-3}-\displaystyle\frac{x+5}{x-2}=0</math>
|-
|-
|b)
|b)
Zeile 56: Zeile 56:
|}
|}
</div>{{#NAVCONTENT:Svar|Svar 2.2:3|Lösning a|Lösning 2.2:3a|Lösning b|Lösning 2.2:3b|Lösning c|Lösning 2.2:3c|Lösning d|Lösning 2.2:3d}}
</div>{{#NAVCONTENT:Svar|Svar 2.2:3|Lösning a|Lösning 2.2:3a|Lösning b|Lösning 2.2:3b|Lösning c|Lösning 2.2:3c|Lösning d|Lösning 2.2:3d}}
 +
 +
===Övning 2.2:4===
 +
<div class="ovning">
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | Skriv ekvationen f&ouml;r linjen<math>\,y=2x+3\,</math> på formen <math>\,y=kx+m\,</math>
 +
|-
 +
|b)
 +
|| Skriv ekvationen f&ouml;r linjen<math>,3x+4y-5=0</math> på formen <math>\,y=kx+m\,</math>
 +
|-
 +
|c)
 +
|| <math>\left(\displaystyle\frac{1}{x-1}-\frac{1}{x+1}\right)\left(x^2+\frac{1}{2}\right)=\displaystyle\frac{6x-1}{3x-3}</math>
 +
|-
 +
|d)
 +
|| <math>\left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0</math>
 +
|}
 +
</div>{{#NAVCONTENT:Svar|Svar 2.2:4|Lösning a|Lösning 2.2:4a|Lösning b|Lösning 2.2:4b}}

Version vom 13:04, 31. Mär. 2008

 

Vorlage:Mall:Ej vald flik Vorlage:Mall:Vald flik

 

Övning 2.2:1

Lös ekvationerna

a) \displaystyle x-2=-1 b) \displaystyle 2x+1=13
c) \displaystyle \displaystyle\frac{1}{3}x-1=x d) \displaystyle 5x+7=2x-6

Övning 2.2:2

Lös ekvationerna

a) \displaystyle \displaystyle\frac{5x}{6}-\displaystyle\frac{x+2}{9}=\displaystyle\frac{1}{2} b) \displaystyle \displaystyle\frac{8x+3}{7}-\displaystyle\frac{5x-7}{4}=2
c) \displaystyle (x+3)^2-(x-5)^2=6x+4 d) \displaystyle (x^2+4x+1)^2+3x^4-2x^2=(2x^2+2x+3)^2

Övning 2.2:3

Lös ekvationerna

a) \displaystyle \displaystyle\frac{x+3}{x-3}-\displaystyle\frac{x+5}{x-2}=0
b) \displaystyle \displaystyle\frac{4x}{4x-7}-\displaystyle\frac{1}{2x-3}=1
c) \displaystyle \left(\displaystyle\frac{1}{x-1}-\frac{1}{x+1}\right)\left(x^2+\frac{1}{2}\right)=\displaystyle\frac{6x-1}{3x-3}
d) \displaystyle \left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0

Övning 2.2:4

a) Skriv ekvationen för linjen\displaystyle \,y=2x+3\, på formen \displaystyle \,y=kx+m\,
b) Skriv ekvationen för linjen\displaystyle ,3x+4y-5=0 på formen \displaystyle \,y=kx+m\,
c) \displaystyle \left(\displaystyle\frac{1}{x-1}-\frac{1}{x+1}\right)\left(x^2+\frac{1}{2}\right)=\displaystyle\frac{6x-1}{3x-3}
d) \displaystyle \left(\displaystyle\frac{2}{x}-3\right)\left(\displaystyle\frac{1}{4x}+\frac{1}{2}\right)-\left(\displaystyle\frac{1}{2x}-\frac{2}{3}\right)^2-\left(\displaystyle\frac{1}{2x}+\frac{1}{3}\right)\left(\displaystyle\frac{1}{2x}-\frac{1}{3}\right)=0