Lösung 4.4:3c

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we consider the entire expression
+
If we consider the entire expression <math>x + 40^{\circ}</math> as an unknown, we have a basic trigonometric equation and can, with the aid of the unit circle, see that there are two solutions to the equation for <math>0^{\circ}\le x+40^{\circ}\le 360^{\circ}</math> namely <math>x+40^{\circ} = 65^{\circ}</math> and the symmetric solution <math>x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,</math>.
-
<math>x+\text{4}0^{\circ }</math>
+
-
as an unknown, we have a fundamental trigonometric equation and can, with the aid of the unit circle, see that there are two solutions to the equation for
+
-
<math>0^{\circ }\le x+\text{4}0^{\circ }\le \text{36}0^{\circ }</math>
+
-
namely
+
-
<math>x+\text{4}0^{\circ }=\text{65}^{\circ }</math>
+
-
and the symmetric solution
+
-
<math>x+\text{4}0^{\circ }=\text{18}0^{\circ }-\text{65}^{\circ }=\text{115}^{\circ }</math>.
+
-
 
+
[[Image:4_4_3_c.gif|center]]
[[Image:4_4_3_c.gif|center]]
-
It is then easy to set up the general solution by adding multiples of
+
It is then easy to set up the general solution by adding multiples of <math>360^{\circ}\,</math>,
-
<math>360^{\circ }</math>,
+
-
 
+
-
 
+
-
<math>x+\text{4}0^{\circ }=\text{65}^{\circ }+n\centerdot 360^{\circ }</math>
+
-
and
+
-
<math>x+\text{4}0^{\circ }=\text{115}^{\circ }+n\centerdot 360^{\circ }</math>
+
-
 
+
-
for all integers
+
{{Displayed math||<math>x + 40^{\circ} = 65^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad x + 40^{\circ} = 115^{\circ} + n\cdot 360^{\circ}</math>}}
-
<math>n</math>, which gives
+
 +
for all integers ''n'', which gives
-
<math>x=2\text{5}^{\circ }+n\centerdot 360^{\circ }</math>
+
{{Displayed math||<math>x = 25^{\circ} + n\cdot 360^{\circ}\qquad\text{and}\qquad x=75^{\circ} + n\cdot 360^{\circ}\,\textrm{.}</math>}}
-
and
+
-
<math>x=7\text{5}^{\circ }+n\centerdot 360^{\circ }</math>
+

Version vom 12:58, 13. Okt. 2008

If we consider the entire expression \displaystyle x + 40^{\circ} as an unknown, we have a basic trigonometric equation and can, with the aid of the unit circle, see that there are two solutions to the equation for \displaystyle 0^{\circ}\le x+40^{\circ}\le 360^{\circ} namely \displaystyle x+40^{\circ} = 65^{\circ} and the symmetric solution \displaystyle x + 40^{\circ} = 180^{\circ} - 65^{\circ} = 115^{\circ}\,.

It is then easy to set up the general solution by adding multiples of \displaystyle 360^{\circ}\,,

Vorlage:Displayed math

for all integers n, which gives

Vorlage:Displayed math