Lösung 4.3:7a
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | We can write the expression | + | We can write the expression <math>\sin (x+y)</math> in terms of <math>\sin x</math>, <math>\cos x</math>, <math>\sin y</math> and <math>\cos y</math> if we use the addition formula for sine, |
| - | <math>\ | + | |
| - | in terms of | + | |
| - | <math>\ | + | |
| - | <math>\ | + | |
| - | <math>\ | + | |
| - | and | + | |
| - | <math>\ | + | |
| - | if we use the addition formula for sine, | + | |
| + | {{Displayed math||<math>\sin (x+y) = \sin x\cdot \cos y + \cos x\cdot \sin y\,\textrm{.}</math>}} | ||
| - | <math>\ | + | In turn, it is possible to express the factors <math>\cos x</math> and <math>\cos y</math> in terms of <math>\sin x</math> and <math>\sin y</math> by using the Pythagorean identity, |
| + | {{Displayed math||<math>\begin{align} | ||
| + | \cos x &= \pm \sqrt{1-\sin^2\!x} = \pm \sqrt{1-(2/3)^2} = \pm\frac{\sqrt{5}}{3}\,,\\[5pt] | ||
| + | \cos y &= \pm \sqrt{1-\sin^2\!y} = \pm \sqrt{1-(1/3)^{2}} = \pm \frac{2\sqrt{2}}{3}\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| - | + | Because ''x'' and ''y'' are angles in the first quadrant, <math>\cos x</math> and <math>\cos y</math> are positive, so we in fact have | |
| - | + | ||
| - | and | + | |
| - | + | ||
| - | in | + | |
| - | <math>\ | + | |
| - | and | + | |
| - | <math>\ | + | |
| - | + | ||
| + | {{Displayed math||<math>\cos x = \frac{\sqrt{5}}{3}\qquad\text{and}\qquad\cos y = \frac{2\sqrt{2}}{3}\,\textrm{.}</math>}} | ||
| - | <math>\begin{align} | ||
| - | & \cos x=\pm \sqrt{1-\text{sin}^{2}x}=\pm \sqrt{1-\left( {2}/{3}\; \right)^{2}}=\pm \frac{\sqrt{5}}{3} \\ | ||
| - | & \cos y=\pm \sqrt{1-\text{sin}^{2}y}=\pm \sqrt{1-\left( {1}/{3}\; \right)^{2}}=\pm \frac{2\sqrt{2}}{3} \\ | ||
| - | \end{align}</math> | ||
| - | |||
| - | |||
| - | |||
| - | Because | ||
| - | <math>x</math> | ||
| - | and | ||
| - | <math>y</math> | ||
| - | are angles in the first quadrant, | ||
| - | <math>\text{cos }x</math> | ||
| - | and | ||
| - | <math>\text{cos }y</math> | ||
| - | are positive, so we in fact have | ||
| - | |||
| - | |||
| - | <math>\cos x=\frac{\sqrt{5}}{3}</math> | ||
| - | and | ||
| - | <math>\cos y=\frac{2\sqrt{2}}{3}</math> | ||
| - | |||
| - | |||
Finally, we obtain | Finally, we obtain | ||
| - | + | {{Displayed math||<math>\sin (x+y) = \frac{2}{3}\cdot \frac{2\sqrt{2}}{3} + \frac{\sqrt{5}}{3}\cdot \frac{1}{3} = \frac{4\sqrt{2} + \sqrt{5}}{9}\,\textrm{.}</math>}} | |
| - | <math>\sin | + | |
Version vom 07:59, 10. Okt. 2008
We can write the expression \displaystyle \sin (x+y) in terms of \displaystyle \sin x, \displaystyle \cos x, \displaystyle \sin y and \displaystyle \cos y if we use the addition formula for sine,
In turn, it is possible to express the factors \displaystyle \cos x and \displaystyle \cos y in terms of \displaystyle \sin x and \displaystyle \sin y by using the Pythagorean identity,
Because x and y are angles in the first quadrant, \displaystyle \cos x and \displaystyle \cos y are positive, so we in fact have
Finally, we obtain
