Lösung 4.3:4b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
Zeile 1: | Zeile 1: | ||
If we once again use the Pythagorean identity we get | If we once again use the Pythagorean identity we get | ||
+ | {{Displayed math||<math>\cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \sin v = \pm\sqrt{1-\cos^2 v}\,\textrm{.}</math>}} | ||
- | <math>\ | + | Because the angle ''v'' lies between <math>0</math> and <math>\pi</math>, <math>\sin v</math> is positive (an angle in the first and second quadrants has a positive ''y''-coordinate) and therefore |
- | + | {{Displayed math||<math>\sin v = +\sqrt{1-\cos^2 v} = \sqrt{1-b^2}\,\textrm{.}</math>}} | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | <math>\sin v=+\sqrt{1-\cos ^ | + |
Version vom 14:10, 9. Okt. 2008
If we once again use the Pythagorean identity we get
Because the angle v lies between \displaystyle 0 and \displaystyle \pi, \displaystyle \sin v is positive (an angle in the first and second quadrants has a positive y-coordinate) and therefore