Lösung 4.2:7

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If extend the line
+
If we extend the line AB to a point D opposite C, we will get the right-angled triangle shown below, where the distance ''x'' between C and D is the desired distance.
-
<math>\text{AB}</math>
+
-
to a point
+
-
<math>\text{D}</math>
+
-
opposite
+
-
<math>\text{C}</math>, we will get the right-angled triangle shown below, where the distance
+
-
<math>x</math>
+
-
between
+
-
<math>\text{C}</math>
+
-
and
+
-
<math>\text{D}</math>
+
-
is the desired distance.
+
-
 
+
[[Image:4_2_7_1.gif|center]]
[[Image:4_2_7_1.gif|center]]
-
The information in the exercise can be summarized by considering the two triangles
+
The information in the exercise can be summarized by considering the two triangles ACD and BCD, and setting up relations for the tangents that the angles 30° and 45° gives rise to,
-
<math>\text{ACD}</math>
+
-
and
+
-
<math>\text{BCD}</math>, and setting up relations for the tangents that the angles
+
-
<math>\text{3}0^{\circ }</math>
+
-
and
+
-
<math>\text{45}^{\circ }</math>
+
-
gives rise to,
+
 +
{| align="center"
 +
|align="center"|[[Image:4_2_7_2-1.gif]]
 +
|width="20px"|&nbsp;
 +
|align="center"|[[Image:4_2_7_2-2.gif]]
 +
|-
 +
|align="center" valign="top"|<math>\begin{align} x &= (10+y)\tan 30^{\circ}\\[5pt] &= (10+y)\frac{1}{\sqrt{3}}\end{align}</math>
 +
||
 +
|align="center" valign="top"|<math>\begin{align} x &= y\cdot\tan 45^{\circ}\\[5pt] &= y\cdot 1\end{align}</math>
 +
|}
-
[[Image:4_2_7_2.gif|center]]
+
where ''y'' is the distance between B and D.
-
<math>x=\left( 100+y \right)\tan 30^{\circ }=\left( 100+y \right)\frac{1}{\sqrt{3}}</math> <math>x=y\centerdot \tan 45^{\circ }=y\centerdot 1</math>
+
The second relation above gives that <math>y=x</math> and substituting this into the first relation gives
 +
{{Displayed math||<math>x = (10+x)\frac{1}{\sqrt{3}}\,\textrm{.}</math>}}
 +
Multiplying both sides by <math>\sqrt{3}</math> gives
-
where
+
{{Displayed math||<math>\sqrt{3}x=10+x</math>}}
-
<math>y</math>
+
-
is the distance between B and D.
+
-
The second relation above gives that
+
moving all the ''x''-terms to the left-hand side gives
-
<math>y=x</math>
+
-
and substituting this into the first relation gives
+
-
 
+
-
 
+
-
<math>x=\left( 100+x \right)\frac{1}{\sqrt{3}}</math>
+
-
 
+
-
 
+
-
Multiplying both sides by
+
-
<math>\sqrt{3}</math>
+
-
gives
+
-
 
+
-
 
+
-
<math>\sqrt{3}x=100+x</math>
+
-
 
+
-
 
+
-
moving all the x-terms to the left-hand side gives
+
-
 
+
-
 
+
-
<math>\left( \sqrt{3}-1 \right)x=100</math>
+
 +
{{Displayed math||<math>(\sqrt{3}-1)x = 10\,\textrm{.}</math>}}
The answer is
The answer is
-
 
+
{{Displayed math||<math>x = \frac{10}{\sqrt{3}-1}\ \text{m}\approx 13\textrm{.}6\ \text{m.}</math>}}
-
<math>x=\frac{100}{\sqrt{3}-1}\ \text{m}\quad \approx \quad \text{136}\text{.6}\ \text{m}</math>
+

Version vom 11:54, 9. Okt. 2008

If we extend the line AB to a point D opposite C, we will get the right-angled triangle shown below, where the distance x between C and D is the desired distance.

The information in the exercise can be summarized by considering the two triangles ACD and BCD, and setting up relations for the tangents that the angles 30° and 45° gives rise to,

Image:4_2_7_2-1.gif   Image:4_2_7_2-2.gif
\displaystyle \begin{align} x &= (10+y)\tan 30^{\circ}\\[5pt] &= (10+y)\frac{1}{\sqrt{3}}\end{align} \displaystyle \begin{align} x &= y\cdot\tan 45^{\circ}\\[5pt] &= y\cdot 1\end{align}

where y is the distance between B and D.

The second relation above gives that \displaystyle y=x and substituting this into the first relation gives

Vorlage:Displayed math

Multiplying both sides by \displaystyle \sqrt{3} gives

Vorlage:Displayed math

moving all the x-terms to the left-hand side gives

Vorlage:Displayed math

The answer is

Vorlage:Displayed math