Lösung 4.2:6

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
We can work out the length we are looking for by taking the difference
+
We can work out the length we are looking for by taking the difference <math>a-b</math> of the sides <math>a</math> and <math>b</math> in the triangles below.
-
<math>a-b\text{ }</math>
+
-
of the sides
+
-
<math>a</math>
+
-
and
+
-
<math>b</math>
+
-
in the triangles below:
+
-
[[Image:4_2_6_13.gif|center]]
+
[[Image:4_2_6_13.gif|center]][[Image:4_2_6_2.gif|center]]
-
[[Image:4_2_6_2.gif|center]]
+
-
If we take the tangent of the given angle in each triangle, we easily obtain
+
If we take the tangent of the given angle in each triangle, we easily obtain <math>a</math> and <math>b</math>.
-
<math>a</math>
+
-
and
+
-
<math>b</math>:
+
 +
{| width="100%"
 +
||[[Image:4_2_6_13.gif]]
 +
||<math>a = 1\cdot\tan 60^{\circ} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \frac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} = \sqrt{3}</math>
 +
|-
 +
||[[Image:4_2_6_4.gif]]
 +
||<math>b = 1\cdot\tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}} = 1</math>
 +
|}
-
[[Image:4_2_6_13.gif|center]]
+
Hence,
-
[[Image:4_2_6_4.gif|center]]
+
-
<math>a=1\centerdot \tan 60^{\circ }=\frac{\sin 60^{\circ }}{\cos 60^{\circ }}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}</math>
+
{{Displayed math||<math>x = a-b = \sqrt{3}-1\,\textrm{.}</math>}}

Version vom 11:28, 9. Okt. 2008

We can work out the length we are looking for by taking the difference \displaystyle a-b of the sides \displaystyle a and \displaystyle b in the triangles below.

If we take the tangent of the given angle in each triangle, we easily obtain \displaystyle a and \displaystyle b.

Image:4_2_6_13.gif \displaystyle a = 1\cdot\tan 60^{\circ} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \frac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} = \sqrt{3}
Image:4_2_6_4.gif \displaystyle b = 1\cdot\tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}} = 1

Hence,

Vorlage:Displayed math