Lösung 4.2:1a

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
[[Image:4_2_1_a.gif|center]]
 
- 
- 
- 
The definition of the tangent states that
The definition of the tangent states that
-
+
{| width="100%"
-
 
+
| width="50%" align="center"|<math>\tan u=\frac{\text{opposite}}{\text{adjacent}}</math>
-
<math>\tan u=\frac{\text{opposite}}{\text{adjacent}}</math>
+
| width="50%" align="center"|[[Image:4_2_1_a.gif]]
-
+
|}
In our case, this means that
In our case, this means that
 +
{{Displayed math||<math>\tan 27^{\circ} = \frac{x}{13}</math>}}
-
<math>\tan 27^{\circ }=\frac{x}{13}</math>
+
which gives <math>x = 13\cdot \tan 27^{\circ}\,</math>.
-
 
+
-
 
+
-
which gives
+
-
<math>x=\text{13}\centerdot \text{tan 27}^{\circ }</math>.
+
-
NOTE: Using a calculator, we can work out what
 
-
<math>x\text{ }</math>
 
-
should be:
 
 +
Note: Using a calculator, we can work out what ''x'' should be,
-
<math>x=\text{13}\centerdot \text{tan 27}^{\circ }\approx 6.62</math>
+
{{Displayed math||<math>x = 13\cdot\tan 27^{\circ} \approx 6\textrm{.}62\,\textrm{.}</math>}}

Version vom 13:52, 8. Okt. 2008

The definition of the tangent states that

\displaystyle \tan u=\frac{\text{opposite}}{\text{adjacent}} Image:4_2_1_a.gif

In our case, this means that

Vorlage:Displayed math

which gives \displaystyle x = 13\cdot \tan 27^{\circ}\,.


Note: Using a calculator, we can work out what x should be,

Vorlage:Displayed math