Lösung 4.1:9

Aus Online Mathematik Brückenkurs 1

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
<math>\text{1}0</math>
+
10 seconds corresponds to 1/6 minutes, so that during that time period, the second hand sweeps over 1/6 of a turn, i.e. the sector of a circle with angle
-
seconds corresponds to
+
-
<math>\frac{1}{6}</math>
+
-
minutes, so that during that time period, the second hand sweeps over
+
-
<math>\frac{1}{6}</math>
+
-
of a turn, i.e. the sector of a circle with angle
+
 +
{{Displayed math||<math>\alpha = \frac{1}{6}\cdot 2\pi\ \text{radians} = \frac{\pi}{3}\ \text{radians.}</math>}}
-
<math>\alpha =\frac{1}{6}\centerdot 2\pi </math>
 
-
radians
 
-
<math>=\frac{\pi }{3}</math>
 
-
radians
 
- 
- 
-
{{NAVCONTENT_START}}
 
<center> [[Image:4_1_9_.gif]] </center>
<center> [[Image:4_1_9_.gif]] </center>
- 
- 
-
{{NAVCONTENT_STOP}}
 
The area of the sector is
The area of the sector is
-
Area
+
{{Displayed math||<math>\text{Area} = \frac{1}{2}\alpha r^{2} = \frac{1}{2}\cdot \frac{\pi}{3}\cdot (8\ \text{cm})^2 = \frac{32\pi}{3}\ \text{cm}^{2} \approx 33\textrm{.}5\ \text{cm}^{2}\,\textrm{.}</math>}}
-
<math>=\frac{1}{2}\alpha r^{2}=\frac{1}{2}\centerdot \frac{\pi }{3}\centerdot \left( 8\ \text{cm} \right)^{2}=\frac{32\pi }{3}\ \text{cm}^{2}\approx 33.5\ \text{cm}^{2}</math>
+

Version vom 11:50, 8. Okt. 2008

10 seconds corresponds to 1/6 minutes, so that during that time period, the second hand sweeps over 1/6 of a turn, i.e. the sector of a circle with angle

Vorlage:Displayed math

Image:4_1_9_.gif

The area of the sector is

Vorlage:Displayed math