Lösung 4.1:3c
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K |
|||
| Zeile 1: | Zeile 1: | ||
| - | In this right-angled triangle, the side of length | + | In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives |
| - | + | ||
| - | is the hypotenuse (it is the side which | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>17^2 = 8^2 + x^2</math>}} | ||
or | or | ||
| - | + | {{Displayed math||<math>x^2 = 17^2 - 8^2\,\textrm{.}</math>}} | |
| - | <math>x^ | + | |
| - | + | ||
We get | We get | ||
| - | + | {{Displayed math||<math>\begin{align} | |
| - | <math>\begin{align} | + | x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt] |
| - | & | + | &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} |
| - | & =\sqrt{9\ | + | \end{align}</math>}} |
| - | \end{align}</math> | + | |
Version vom 10:21, 3. Okt. 2008
In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives
or
We get
