Lösung 3.3:3d
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  | |||
| Zeile 1: | Zeile 1: | ||
| - | We write the argument of  | + | We write the argument of <math>\log_{3}</math> as a power of 3, | 
| - | <math>\ | + | |
| - | as a power of  | + | |
| - | + | ||
| + | {{Displayed math||<math>9\cdot 3^{1/3} = 3^2\cdot 3^{1/3} = 3^{2+1/3} = 3^{7/3}\,,</math>}} | ||
| - | + | and then simplify the expression with the logarithm laws | |
| - | + | {{Displayed math||<math>\log _3 (9\cdot 3^{1/3}) = \log_3 3^{7/3} = \frac{7}{3}\cdot \log_3 3 = \frac{7}{3}\cdot 1 = \frac{7}{3}\,\textrm{.}</math>}} | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\log  | + | |
Version vom 06:36, 2. Okt. 2008
We write the argument of \displaystyle \log_{3} as a power of 3,
and then simplify the expression with the logarithm laws
 
		  