Lösung 4.4:8b
Aus Online Mathematik Brückenkurs 1
(Unterschied zwischen Versionen)
K (Lösning 4.4:8b moved to Solution 4.4:8b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | Suppose that |
- | < | + | <math>\text{cos }x\ne 0</math> |
- | {{ | + | , so that we can divide both sides by |
+ | <math>\text{cos }x</math> | ||
+ | to obtain | ||
+ | |||
+ | |||
+ | <math>\frac{\sin x}{\cos x}=\sqrt{3}</math> | ||
+ | i.e. | ||
+ | <math>\tan x=\sqrt{3}</math> | ||
+ | |||
+ | |||
+ | This equation has the solutions | ||
+ | <math>x=\frac{\pi }{3}+n\pi </math> | ||
+ | for all integers | ||
+ | <math>n</math>. | ||
+ | |||
+ | If, on the other hand, | ||
+ | <math>\text{cos }x=0</math>, so | ||
+ | <math>\text{sin }x\text{ }=\pm \text{1}</math> | ||
+ | ( draw a unit circle) and the equation cannot have such a solution. | ||
+ | |||
+ | Thus, the equation has the solutions | ||
+ | |||
+ | |||
+ | <math>x=\frac{\pi }{3}+n\pi </math> | ||
+ | ( | ||
+ | <math>n</math> | ||
+ | an arbitrary integer). |
Version vom 13:39, 1. Okt. 2008
Suppose that \displaystyle \text{cos }x\ne 0 , so that we can divide both sides by \displaystyle \text{cos }x to obtain
\displaystyle \frac{\sin x}{\cos x}=\sqrt{3}
i.e.
\displaystyle \tan x=\sqrt{3}
This equation has the solutions
\displaystyle x=\frac{\pi }{3}+n\pi
for all integers
\displaystyle n.
If, on the other hand, \displaystyle \text{cos }x=0, so \displaystyle \text{sin }x\text{ }=\pm \text{1} ( draw a unit circle) and the equation cannot have such a solution.
Thus, the equation has the solutions
\displaystyle x=\frac{\pi }{3}+n\pi
(
\displaystyle n
an arbitrary integer).